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 Atmospheric Response Operators from the
Fluctuation Dissipation Theorem:

Validation and Applications
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Andrew Majda, CIMS

• Data availability

• “Friendlier” conditions

• Generalization to functionals of state
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Berner & Branstator (2006)
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Generalized FDT -- Simplifications
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Majda, Abramov &  Grote (2005) found third order accuracy 

for A = I and second order accuracy for quadratic A.





300
!̂ 2

300 )(! "



Application

Atmospheric general circulation model (NCAR’s CCM0)

     * Avoid sampling limitations when calculating lag covariances
     * Enables rigorous testing of the resulting operator

Primitive equations, circa 1980 physical parameterizations

Perpetual January, fixed boundary conditions

R15

9 level

8 million 12hrly simulated states

} 18352 degrees of freedom



Reduce Dimensionality

1. Pick fields from

      * ps

      * psi x 9

      * chi x 9

      * T   x 9

      * water vapor mixing ratio x 9

2. Truncate each field using EOFs

       * psi   100x9 (>90%)

       * T     496x9 (100%)

3. Form multivariate (truncated) fields,

    normalize by std dev & overweight T,

    calculate EOFs

    truncate (1800 EOFs, >95%)

Assume lagged covariances vanish for τ > 30d





24 case average response to
sinusoidal equatorial heating
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24 case average response to
sinusoidal equatorial heating

(temperature)



FD skill for individual cases
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500mb heating

336mb streamfunction
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CCM0 Response FD Response
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For f  fixed in time

     

     R(t) = U(t) f

     with U(t) = C(" )C#1(0)d"
0

t

$

So for a delta function forcing at % t ,  the response at t is

     &R(t) = &U(t # % t ) f ( % t )&t

     for &U(t # % t ) = C(t # % t )C#1(0)

And so for time - dependent f

     R(t) = C(" )C#1(0) f (")d"
0

t

$

Time-dependent Forcing



3day pulse forcing
CCM0 FD
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+4deg/d (5m/s) source steady source
FD



FD
moving source

20m/s

10m/s

5m/s



The FDT can be used to estimate the response of the mean state
and functionals of state.

The FDT can be used to estimate the response to constant and
time-dependent forcing.

The FDT gives solutions that are accurate enough to be useful for
optimization and inverse problems and for systematic explorations
of atmospheric response.

Explorations using FDT operators for CCM0 indicate large
sensitivities to forcing position and propagation speed.  In particular
they show the potential for short-lived or moderately propagating
heat sources to affect midlatitudes.

Summary


