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Abstract
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A The Stochastic Environment

In this Appendix, we provide a precise description of the stochastic environment. Let be given

a complete probability space (Ω,F ,P) over which is defined a Poisson process N = {Nt}t≥0

of intensity λ. Denote by FN = {FN
t }t≥0 the filtration generated by N and augmented by

the P–null sets. This filtration satisfies the usual conditions (Dellacherie and Meyer (1978,

Chapter IV, Definition 48)). The process M = {Mt}t≥0 defined by

Mt = Nt − λt

for all t ≥ 0 is an FN–martingale under P. For any FN–predictable process Λ = {Λt}t≥0

with values in {λ, λ + ∆λ}, denote by ZΛ = {ZΛ
t }t≥0 the unique solution to the stochastic

differential equation

ZΛ
t = 1 +

∫ t

0

ZΛ
s−

(
Λs

λ
− 1

)
dMs

for all t ≥ 0. By the exponential formula for Lebesgue–Stieltjes calculus (Brémaud (1981,

Appendix A4, Theorem T4)), one has

ZΛ
t =

∏

s∈(0,t]

[
1 +

(
Λs

λ
− 1

)
∆Ns

]
exp

(∫ t

0

(λ− Λs) ds

)

for all t ≥ 0, where ∆Ns = Ns − Ns− for all s ∈ [0, t], with N0− = 0 and
∏
∅ = 1 by

convention. From Brémaud (1981, Chapter VI, Theorem T2), ZΛ is a positive FN–local

martingale under P. Moreover E [ZΛ
t ] = 1 for all t ≥ 0. A standard extension argument

implies that there exists a unique probability measure PΛ over (Ω,F) defined by the family

of Radon–Nikodym derivatives

dPΛ

dP

∣∣∣∣
FN

t

= ZΛ
t

for all t ≥ 0. It then follows from Brémaud (1981, Chapter VI, Theorem T3) that the process

MΛ defined by (11) is an FN–martingale under PΛ.

B The Incentive Compatibility Constraint

Proof of Lemma 1. Since Uτ (Γ, Λ) is integrable by (8), one can define a positive FN–

martingale U(Γ, Λ) under PΛ by choosing for each t ≥ 0 a random variable Ut(Γ, Λ) in the

equivalence class of the conditional expectation in (10). Moreover, since the filtration FN

satisfies the usual conditions, one can for each t ≥ 0 choose Ut(Γ, Λ) in such a way that the
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martingale U(Γ, Λ) is right-continuous with left-hand limits (Dellacherie and Meyer (1982,

Chapter VI, Theorem 4)). The predictable representation (12) then follows directly from

Brémaud (1981, Chapter III, Theorems T9 and T17). ¥

Proof of Proposition 1. Let U ′
t denote the agent’s lifetime expected payoff, given the

information available at date t, when she acts according to Λ′ = {Λ′t}t≥0 until date t and

then reverts to Λ = {Λt}t≥0:

U ′
t =

∫ t∧τ−

0

e−ρs(dLs + 1{Λ′s=λ+∆λ}XsBds) + e−ρtWt(Γ, Λ). (B.1)

Following Sannikov (2008, Proposition 2), the proof now proceeds as follows. First, one

shows that if U ′ = {U ′
t}t≥0 is an FN–submartingale under PΛ′ that is not a martingale, then

Λ is suboptimal for the agent. Indeed, in that case there exists some t > 0 such that

U0−(Γ, Λ) = U ′
0− < EΛ′ [U ′

t ],

where U0−(Γ, Λ) and U ′
0− correspond to unconditional expected payoffs at date 0. By (B.1),

the agent is then strictly better off acting according to Λ′ until date t and then reverting to

Λ. The claim follows. Next, one shows that if U ′ is a FN–supermartingale under PΛ′ , then

Λ is at least as good as Λ′ for the agent. From (10) and (B.1), one has

U ′
t = Ut(Γ, Λ) +

∫ t∧τ

0

e−ρs(1{Λ′s=λ+∆λ} − 1{Λs=λ+∆λ})XsB ds (B.2)

for all t ≥ 0. Hence, since U(Γ, Λ) as given by (12) is right-continuous with left-hand limits,

so is U ′. Moreover, since U ′ is positive, it has a last element. Hence, by the optional sampling

theorem (Dellacherie and Meyer (1982, Chapter VI, Theorem 10)),

U ′
0− ≥ EΛ′ [U ′

τ ] = U0−(Γ, Λ′),

where again U0−(Γ, Λ′) is an unconditional expected payoff at date 0. Since U ′
0− = U0−(Γ, Λ)

by (B.1), the claim follows. Now, for each t ≥ 0,

U ′
t = Ut(Γ, Λ) +

∫ t∧τ

0

e−ρs(1{Λ′s=λ+∆λ} − 1{Λs=λ+∆λ})XsB ds

= U0(Γ, Λ)−
∫ t∧τ

0

e−ρsHs(Γ, Λ) dMΛ
s +

∫ t∧τ

0

e−ρs(1{Λ′s=λ+∆λ} − 1{Λs=λ+∆λ})XsB ds

= U0(Γ, Λ)−
∫ t∧τ

0

e−ρsHs(Γ, Λ) dMΛ′
s −

∫ t∧τ

0

e−ρsHs(Γ, Λ)(Λ′s − Λs) ds

+

∫ t∧τ

0

e−ρs(1{Λ′s=λ+∆λ} − 1{Λs=λ+∆λ})XsB ds
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= U0(Γ, Λ)−
∫ t∧τ

0

e−ρsHs(Γ, Λ) dMΛ′
s

+

∫ t∧τ

0

e−ρs∆λ(1{Λ′s=λ+∆λ} − 1{Λs=λ+∆λ})[Xsb−Hs(Γ, Λ)] ds,

where the first equality follows from (B.2), the second from (12), the third from (11), and

the fourth from a straightforward computation. Since H(Γ, Λ) is FN–predictable and MΛ′

is an FN–martingale under PΛ′ , the drift of U ′ has the same sign as

(1{Λ′t=λ+∆λ} − 1{Λt=λ+∆λ})[Xtb−Ht(Γ, Λ)]

for all t ∈ [0, τ). If (14) holds for the effort process Λ, then this drift remains negative for

all t ∈ [0, τ) and all choices of Λ′t ∈ {λ, λ + ∆λ}. This implies that for any effort process

Λ′, U ′ is an FN–supermartingale under PΛ′ , and thus that Λ is at least as good as Λ′ for

the agent. If (14) does not hold for the effort process Λ, then choose Λ′ such that for each

t ∈ [0, τ), Λ′t = λ if and only if Ht(Γ, Λ) ≥ Xtb. The drift of U ′ is then everywhere positive,

and strictly positive over a set of PΛ′–strictly positive measure. As a result of this, U ′ is

an FN–submartingale under PΛ′ that is not a martingale, and thus Λ is suboptimal for the

agent. This concludes the proof. ¥

C The Value Function

To simplify the exposition, we shall work in this appendix with the size-adjusted social value

function, v, rather than with the size-adjusted value function of the principal, f . These two

functions are related by v(w) = f(w) + w for all w ≥ 0, so that (41) can be rewritten as:





v(w) = v(b)
b

w if w ∈ [0, b],

rv(w) = µ− λC − (ρ− r)w + Lv(w) if w ∈ (b, wi],

(r − γ)v(w) = µ− λC − γc− (ρ− r)w + Lγv(w) if w ∈ (wi, wp],

v(w) = v(wp) if w ∈ (wp,∞),

(C.1)

where L and Lγ are linear first-order delay differential operators defined by

Lu(w) = (ρw + λb)u′(w)− λ[u(w)− u(w − b)] (C.2)

and

Lγu(w) = Lu(w)− γwu′(w) (C.3)
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for all w > b and any continuous function u of class C1(R+\{b}). We assume that

µ− λC > (ρ− r)b
(
2 +

r

λ

)
(C.4)

throughout this appendix.

C.1 The No Investment Case

As a preliminary, we deal with the case in which investment is not feasible, that is γ = 0.

For each β ≥ 0, consider the delay differential equation





vβ(w) = βw if w ∈ [0, b],

rvβ(w) = µ− λC − (ρ− r)w + Lvβ(w) if w ∈ (b,∞).
(C.5)

Given the initial condition over the interval [0, b], which is fixed by the slope parameter

β, (C.5) reduces to a sequence of initial value problems over the intervals (kb, (k + 1)b],

k ∈ N\{0}, that satisfy the assumptions of the Cauchy–Lipschitz theorem. This ensures that

there exists a unique continuous solution vβ to (C.5), which can be recursively constructed.

One can check from (C.4) and (C.5) that vβ is not differentiable at b:

v′β+(b) =
(ρ− r)b− µ + λC

(ρ + λ)b
+ β

r + λ

ρ + λ
< β = v′β−(b). (C.6)

Since vβ is continuous, however, it follows from (C.5) that it is of class C1(R+\{b}). As

a result, one can differentiate (C.5) over R+\{b, 2b}, which in turn implies that vβ is of

class C2(R+\{b, 2b}). By iterating this procedure, one can easily verify that vβ is of class

Ck(R+\{b, . . . , kb}) for all k ∈ N\{0}.
For each β ≥ 0, it is convenient to decompose vβ as follows:

vβ = u1 + βu2, (C.7)

where the auxiliary functions u1 and u2 are the continuous solutions to the delay differential

equations





u1(w) = 0 if w ∈ [0, b],

ru1(w) = µ− λC − (ρ− r)w + Lu1(w) if w ∈ (b,∞)
(C.8)

and





u2(w) = w if w ∈ [0, b],

ru2(w) = Lu2(w) if w ∈ (b,∞),
(C.9)
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respectively. Just as vβ, u1 and u2 are of class Ck(R+\{b, . . . , kb}) for all k ∈ N\{0}. The

decomposition (C.7) allows us to strictly order the derivatives of the functions (vβ)β≥0.

Proposition C.1.1 If β > β′ ≥ 0, then v′β > v′β′ over R+\{b}.

Given the decomposition (C.7), Proposition C.1.1 is an immediate consequence of the

following result.

Lemma C.1.1 u′2 > 0 over R+\{b}.

Proof. From (C.9), u′2 = 1 over the interval [0, b). Consider now the interval (b,∞). From

(C.9) again, it is easy to check that

u′2+(b) =
r + λ

ρ + λ
> 0. (C.10)

Thus, since u2 is of class C1(R+\{b}), one only needs to check that u′2 has no zero in (b,∞).

Arguing by contradiction, let w̃ > b be the first point at which u′2 vanishes. Note that u′2 > 0

over [0, w̃)\{b}. Then, using (C.9) yet again, one obtains that

−λ[u2(w̃)− u2(w̃ − b)]− ru2(w̃) = 0,

which is impossible since u2 is strictly increasing and strictly positive over (0, w̃]. This

contradiction establishes the result. ¥

Proposition C.1.1 shows that the derivatives of the functions (vβ)β≥0 are strictly ordered

by their slopes β over [0, b). We now show that the subfamily of (vβ)β≥0 composed of those

functions whose derivatives have at least a zero in (b,∞) has a maximal element.

Proposition C.1.2 There exists a maximum value β0 of β such that the equation v′β = 0

has a solution over (b,∞). The function vβ0 is increasing over R+.

The proof of Proposition C.1.2 proceeds as follows. For each w ∈ [b,∞), the ratio −u′1+(w)

u′2+(w)

is well defined since u′2+ > 0 over [b,∞) by Lemma C.1.1. In the first step of the proof, we

show that this ratio attains a maximum β0 > 0 over [b,∞). Using Proposition C.1.1 along

with the decomposition (C.7), we then obtain that

v′β > v′β0
= u′1 + β0u

′
2 ≥ 0

over (b,∞) for all β > β0. Hence, for any such β, v′β has no zero in (b,∞). By contrast, let

wp
β0

be the smallest point at which the function −u′1+
u′2+

attains its maximum β0 over [b,∞).
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In the second step of the proof, we show that wp
β0

> b, so that v′β0
is differentiable at wp

β0
.

By construction,

v′β0
(wp

β0
) = u′1(w

p
β0

) + β0u
′
2(w

p
β0

) = 0,

and vβ0 is increasing over R+, and strictly so over [0, wp
β0

]. We now provide a detailed

exposition of each step of the proof.

Step 1 Because u1 and u2 are of class C1(R+\{b}), the function −u′1+
u′2+

is continuous over

[b,∞). Moreover, since u′2+(b) > 0 by (C.10) and

u′1+(b) =
(ρ− r)b− µ + λC

(ρ + λ)b
< 0 (C.11)

by (C.4) and (C.8), −u′1+(b)

u′2+(b)
> 0. Hence, to show that the function −u′1+

u′2+
attains its maximum

over [b,∞), one only needs to check that it takes strictly negative values beyond some point.

Given Lemma C.1.1, this is an immediate consequence of the following result.

Lemma C.1.2 lim infw→∞ u′1(w) ≥ 1.

Proof. Suppose first by way of contradiction that lim infw→∞ u′1(w) = −∞. Then there

exists an increasing divergent sequence (wn)n≥1 in (2b,∞) such that limn→∞ u′1(wn) = −∞
and wn = arg minw∈[0,wn]{u′1+(w)}. For each n ≥ 1, one can find some w̃n ∈ (wn − b, wn)

such that

(ρwn + λb)u′1(wn) = λ[u1(wn)− u1(wn − b)] + ru1(wn) + (ρ− r)wn − µ + λC

= λbu′1(w̃n) + ru1(wn) + (ρ− r)wn − µ + λC,

where the first equality follows from (C.8) and the second from the mean value theorem.

This can conveniently be rewritten as:

u′1(w̃n) =
wn

λb

[
ρu′1(wn)− r

wn

u1(wn)

]
+ u′1(wn) +

µ− λC − (ρ− r)wn

λb
.

Since u1(0) = 0, one has u1(wn) ≥ wnu
′
1(wn) by construction of the sequence (wn)n≥1.

Moreover, u′1(wn) < 0 for n large enough. It then follows that for any such n,

u′1(w̃n) ≤ (ρ− r)wnu
′
1(wn) + µ− λC

λb
.

Therefore, since u′1(wn) < 0,

u′1(w̃n)

u′1(wn)
≥ (ρ− r)wn

λb
+

µ− λC

λbu′1(wn)
,
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so that the ratio
u′1(w̃n)

u′1(wn)
goes to ∞ as n goes to ∞. As u′1(wn) < 0 for n large enough,

one obtains that eventually u′1(w̃n) < u′1(wn), which, since w̃n < wn, contradicts the fact

that wn = arg minw∈[0,wn]{u′1+(w)}. Thus lim infw→∞ u′1(w) > −∞. Assume without loss

of generality that lim infw→∞ u′1(w) is a finite number l. It remains to prove that l ≥ 1.

Consider an increasing divergent sequence (wn)n≥1 in (2b,∞) such that limn→∞ u′1(wn) = l.

Then there exists a constant U such that u1(wn) ≥ lwn + U for all n ≥ 1. Constructing

w̃n ∈ (wn − b, wn) as above and rearranging, it follows that

ρ[u′1(wn)− 1]− r(l − 1) ≥ λb[u′1(w̃n)− u′1(wn)] + rU − µ + λC

wn

for all n ≥ 1. Letting n go to ∞, one obtains that

(ρ− r)(l − 1) ≥ λb lim sup
n→∞

u′1(w̃n)

wn

.

If l < 1, this implies that lim supn→∞ u′1(w̃n) = −∞, which in turn contradicts the finiteness

of l = lim infw→∞ u′1(w). Hence l ≥ 1, and the result follows. ¥

Step 2 A sufficient condition for wp
β0

> b is that the right derivative at b of the function

−u′1+
u′2+

be strictly positive. Differentiating (C.8) and (C.9) at the right of b leads to

u′′1+(b) =
(λ− ρ + r)u′1+(b) + ρ− r

(ρ + λ)b

and

u′′2+(b) =
(λ− ρ + r)u′2+(b)− λ

(ρ + λ)b
.

Combining these expressions with (C.10) and (C.11), one obtains that

−u′′1+(b)u′2+(b) + u′′2+(b)u′1+(b) = −(ρ− r)u′2+(b) + λu′1+(b)

(ρ + λ)b

=
λ

b2(ρ + λ)2

[
µ− λC − (ρ− r)b

(
2 +

r

λ

)]
,

which is strictly positive by (C.4). The result follows. By construction, one has1

wp
β0

= inf
{
(v′β0

)−1(0)
}

> b. (C.12)

This concludes the proof of Proposition C.1.2.

1One can show along the lines of the proof of Lemma C.1.6 that v′β0
vanishes at wp

β0
only, so that vβ0 is

actually strictly increasing over R+. This refined statement is however not required for our purposes.
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In the remainder of this section, we study the concavity of the function vβ0 . The following

proposition summarizes our findings.

Proposition C.1.3 vβ0 is concave over [0, wp
β0

], and strictly so over [b, wp
β0

].

The proof of Proposition C.1.3 proceeds through a sequence of lemmas.

Lemma C.1.3 v′′β0+(b) < 0.

Proof. By (C.6) and (C.12), one has

v′β0+(b) =
(ρ− r)b− µ + λC

(ρ + λ)b
+ β0

r + λ

ρ + λ
> 0. (C.13)

As a result of this,

β0 >
µ− λC − (ρ− r)b

(r + λ)b
. (C.14)

Now, differentiating (C.5) at the right of any w ≥ b leads to

(ρw + λb)v′′β0+(w) = λ[v′β0+(w)− v′β0+(w − b)]− (ρ− r)[v′β0+(w)− 1].

Applying this formula at b and using (C.13) and (C.14), one then obtains that

(ρ + λ)bv′′β0+(b) = λ[v′β0+(b)− β0]− (ρ− r)[v′β0+(b)− 1]

=
(λ− ρ + r)[(ρ− r)b− µ + λC]

(ρ + λ)b
+ β0

(r − ρ)(r + 2λ)

ρ + λ
+ ρ− r

<
λ[(ρ− r)b− µ + λC]

(r + λ)b
+ ρ− r,

which is strictly negative under (C.4). Hence the result. ¥

Lemma C.1.4 v′′β0+ is upper semicontinuous over [b,∞).

Proof. As vβ0 is of class C2(R+\{b, 2b}), one only needs to check that v′′β0+(2b) > v′′β0−(2b).

Differentiating (C.5) both at the left and at the right of any w > b and using the fact that

vβ0 is of class C1(R+\{b}) leads to

(ρw + λb)[v′′β0+(w)− v′′β0−(w)] = λ[v′β0−(w − b)− v′β0+(w − b)].

Applying this formula at 2b and using (C.6) yields the result. ¥
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It follows from Lemma C.1.4 that the set {w ≥ b | v′′β0+(w) ≥ 0} is closed. Denote by

wc
β0

its smallest element. By Lemma C.1.3, wc
β0

> b and v′′β0+ < 0 over [b, wc
β0

). Thus vβ0

is strictly concave over [b, wc
β0

]. Moreover, vβ0 is linear over [0, b] and v′β0+(b) < v′β0−(b) by

(C.6). Thus vβ0 is concave over [0, wc
β0

]. To complete the proof of Proposition C.1.3, we now

show that wp
β0

coincides with wc
β0

. We shall need the following result.

Lemma C.1.5 wc
β0
≥ 2b.

Proof. Suppose by way of contradiction that wc
β0

< 2b. Then, as wc
β0

> b and vβ0 is of class

C2(R+\{b, 2b}), v′′β0
(wc

β0
) = 0 and v′′β0

< 0 over (b, wc
β0

). There are three cases to consider.

Case 1 Suppose first that λ ≤ ρ− r. Since wc
β0
− b < b and v′′β0

(wc
β0

) = 0, differentiating

(C.5) at wc
β0

yields

λ[v′β0
(wc

β0
)− β0]− (ρ− r)[v′β0

(wc
β0

)− 1] = 0.

Using the fact that λ ≤ ρ− r and that v′β0
≥ 0 over (b,∞), one obtains that

β0 =
(λ− ρ + r)v′β0

(wc
β0

) + ρ− r

λ
≤ ρ− r

λ
.

By (C.14), it follows that

µ− λC − (ρ− r)b

(r + λ)b
≤ ρ− r

λ

which contradicts (C.4).

Case 2 Suppose next that λ ≥ 2ρ − r. Differentiating (C.5) twice over (b, 2b) and using

the fact that vβ0 is linear over (0, b) yields

(ρw + λb)v′′′β0
(w) = λ[v′′β0

(w)− v′′β0
(w − b)]− (2ρ− r)v′′β0

(w) = (λ− 2ρ + r)v′′β0
(w)

for all w ∈ (b, 2b). Since λ ≥ 2ρ− r and v′′β0
< 0 over (b, wc

β0
), this implies that v′′′β0

≤ 0 over

this interval, and hence v′′β0
(wc

β0
) ≤ v′′β0+(b). This leads to a contradiction since v′′β0

(wc
β0

) = 0

and v′′β0+(b) < 0 by Lemma C.1.3.

Case 3 Suppose finally that ρ − r < λ < 2ρ − r. Differentiating (C.5) twice as in Case

2 shows that v′′β0
and v′′′β0

have opposite signs over (b, 2b). It follows that v′′′β0
> 0 and hence

v′′β0
> v′′β0+(b) over (b, wc

β0
]. Since λ− 2ρ + r < 0, one obtains that

v′′′β0
(w) =

(λ− 2ρ + r)v′′β0
(w)

ρw + λb
<

(λ− 2ρ + r)v′′β0+(b)

ρw + λb
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for all w ∈ (b, wc
β0

). One then has

v′′β0
(wc

β0
) = v′′β0+(b) +

∫ wc
β0

b

(λ− 2ρ + r)v′′β0
(w)

ρw + λb
dw <

(
1 +

∫ wc
β0

b

λ− 2ρ + r

ρw + λb
dw

)
v′′β0+(b).

Since v′′β0
(wc

β0
) = 0 and v′′β0+(b) < 0 by Lemma C.1.3, one obtains a contradiction if

1 +

∫ wc
β0

b

λ− 2ρ + r

ρw + λb
dw > 0.

To see that this actually holds whenever wc
β0
∈ (b, 2b), observe that

∫ wc
β0

b

1

ρw + λb
dw <

∫ 2b

b

1

ρw + λb
dw <

1

ρ + λ
.

Since ρ− r < λ < 2ρ− r, this implies that

1 +

∫ wc
β0

b

λ− 2ρ + r

ρw + λb
dw >

2λ− ρ + r

ρ + λ
> 0,

and the result follows. ¥

Proposition C.1.3 is then an immediate consequence of the following result.

Lemma C.1.6 wp
β0

= wc
β0

.

Proof. Since vβ0 is increasing and v′β0
(wp

β0
) = 0 by Proposition C.1.2, one must have

v′′β0+(wp
β0

) ≥ 0, and thus wp
β0
≥ wc

β0
. It remains therefore to prove that wp

β0
≤ wc

β0
. One first

shows that v′′β0
> 0 over an interval (wc

β0
, wc

β0
+ ε) for some ε > 0. Whenever wc

β0
= 2b and

v′′β0+(2b) > 0, this is immediate since vβ0 is of class C2(R+\{b, 2b}). In all the other cases,

v′′β0+(wc
β0

) = 0. Differentiating (C.5) twice at the right of wc
β0

then yields

(ρwc
β0

+λb)v′′′β0+(wc
β0

) = λ[v′′β0+(wc
β0

)−v′′β0+(wc
β0
−b)]−(2ρ−r)v′′β0+(wc

β0
) = −λv′′β0+(wc

β0
−b) > 0,

where the strict inequality follows from the fact that wc
β0
− b ∈ [b, wc

β0
) by Lemma C.1.5, and

that v′′β0+ < 0 over [b, wc
β0

). Since v′′β0+(wc
β0

) = 0 and v′′′β0+(wc
β0

) > 0, one has v′′β0
> 0 over

an interval (wc
β0

, wc
β0

+ ε) for some ε > 0, as claimed. Suppose by way of contradiction that

wp
β0

> wc
β0

. Then v′β0
(wc

β0
) > 0 by (C.12), so that v′′β0

cannot be positive everywhere over

(wc
β0

, wp
β0

). Let w̃ = inf {w > wc
β0
| v′′β0

(w) < 0} ∈ (wc
β0

, wp
β0

). One has v′′β0
> 0 over (wc

β0
, w̃)

and v′′β0
(w̃) = 0 since vβ0 is of class C2(R+\{b, 2b}) and w̃ > wc

β0
≥ 2b by Lemma C.1.5.

One now shows that w̃− b ≥ wc
β0

. Note that one must have v′′′β0+(w̃) ≤ 0, because v′′β0
would

otherwise be strictly positive over an interval (w̃, w̃ + η) for some η > 0. Differentiating
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(C.5) twice at the right of w̃ then yields

0 ≥ (ρw̃ + λb)v′′′β0+(w̃) = λ[v′′β0
(w̃)− v′′β0+(w̃ − b)]− (2ρ− r)v′′β0

(w̃) = −λv′′β0+(w̃ − b),

and thus v′′β0+(w̃ − b) ≥ 0. Now, v′′β0+ < 0 over (b, wc
β0

). Since w̃ > 2b and thus w̃ − b > b, it

follows that w̃ − b ≥ wc
β0

, as claimed. Because v′′β0
> 0 over (wc

β0
, w̃), this implies that vβ0 is

convex over [w̃ − b, w̃]. Then, since

0 = (ρw̃ + λb)v′′β0
(w̃) = λ[v′β0

(w̃)− v′β0
(w̃ − b)]− (ρ− r)[v′β0

(w̃)− 1]

by differentiating (C.5) at w̃, one obtains that v′β0
(w̃) ≥ 1. One then has

ρw̃ + λbv′β0
(w̃) ≤ (ρw̃ + λb)v′β0

(w̃)

= λ[vβ0(w̃)− vβ0(w̃ − b)] + rvβ0(w̃) + (ρ− r)w̃ − µ + λC

≤ λbv′β0
(w̃) + rvβ0(w̃) + (ρ− r)w̃ − µ + λC,

(C.15)

where the first inequality reflects the fact that v′β0
(w̃) ≥ 1, while the second follows from

(C.5) and the third from the convexity of vβ0 over [w̃ − b, w̃]. As a result of (C.15), one has

vβ0(w̃) > µ−λC
r

. Since wp
β0

> w̃ and vβ0 is increasing, one must have vβ0(w
p
β0

) > µ−λC
r

as well.

However, writing (C.5) at wp
β0

yields

0 = (ρwp
β0

+ λb)v′β0
(wp

β0
) = λ[vβ0(w

p
β0

)− vβ0(w
p
β0
− b)] + rvβ0(w

p
β0

) + (ρ− r)wp
β0
− µ + λC,

which, since vβ0 is increasing, implies that vβ0(w
p
β0

) < µ−λC
r

, a contradiction. The result

follows. ¥

C.2 The Investment Case

Proof of Proposition 2. Suppose now that investment is feasible, that is γ > 0. Our goal

is to construct a solution to (C.1) that satisfies the following three requirements:

(i) The first-order condition for investment holds at the investment threshold wi:

wi = inf {w ≥ b |v(w)− wv′+(w) > c}. (C.16)

(ii) The first-order condition for transfers holds at the payment threshold wp:

v′(wp) = 0. (C.17)

(iii) The solution is maximal among the solutions to (C.1) for which there exist thresholds

wi and wp that satisfy (C.16) and (C.17).

We shall proceed as in Section C.1. For each β ≥ β0, consider the delay differential equation

11







vβ,γ(w) = βw if w ∈ [0, b],

rvβ,γ(w) = µ− λC − (ρ− r)w + Lvβ,γ(w) if w ∈ (b, wi
β],

(r − γ)vβ,γ(w) = µ− λC − γc− (ρ− r)w + Lγvβ,γ(w) if w ∈ (wi
β,∞),

(C.18)

where the operators L and Lγ are defined by (C.2) and (C.3) and the threshold wi
β satisfies

wi
β = inf {w ≥ b |vβ,γ(w)− wv′β,γ+(w) > c}. (C.19)

It should be noted that one may have wi
β = b, in which case the intermediary region (b, wi

β]

is empty. We assume that

c = vβ0(w
p
β0

) > c (C.20)

throughout this section. As we will see in Appendix D, (C.20) is a necessary and sufficient

condition for investment to ever be strictly profitable. The existence of a solution to (C.18)–

(C.19) is guaranteed by the following result.

Lemma C.2.1 For each β ≥ β0, there exists a unique continuous solution vβ,γ to (C.18)

with wi
β given by (C.19). Moreover, vβ,γ is of class C1(R+\{b}), wi

β ∈ [b, wp
β0

), and wi
β is

decreasing and continuous with respect to β.

Proof. The proof consists of three steps.

Step 1 One first shows that if β > β′ ≥ β0, then

vβ(w)− wv′β+(w) > vβ′(w)− wv′β′+(w)

for all w ≥ b. Since

vβ(w)− wv′β(w) = u1(w)− wu′1+(w) + β[u2(w)− wu′2+(w)]

by (C.7), one must prove that u2(w) − wu′2+(w) > 0 for all w ≥ b. This holds at b since,

by (C.9) and (C.10), u2(b) − bu′2+(b) = (ρ−r)b
ρ+λ

> 0. The claim then follows if u′′2+ < 0 over

[b,∞). Proceeding as for v′′β0+ in the proof of Lemma C.1.4, it is easy to check that u′′2+ is

upper semicontinuous. Therefore, the set {w ≥ b |u′′2+(w) ≥ 0} is closed. Suppose by way of

contradiction that this set is nonempty, and denote by w̃ its smallest element. Observe that

w̃ > b, since u′′2+(b) =
(λ−ρ+r)u′2+(b)−λ

(ρ+λ)b
as shown in Step 2 of the proof of Proposition C.1.1

and u′2+(b) < 1 = u′2−(b) by (C.10), which implies that u′′2+(b) < 0. As a result, u′′2+ < 0
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over [b, w̃), and in particular u′2(w̃) < u′2+(w̃ − b). Differentiating (C.9) at the right of w̃,

one therefore obtains that

(r − ρ)u′2(w̃) = (ρw̃ + λb)u′′2+(w̃)− λ[u′2(w̃)− u′2+(w̃ − b)] > 0

which, since r < ρ, contradicts the fact that u′2(w̃) > 0 by Lemma C.1.1. The claim follows.

Note that u2 is concave over R+, and strictly so over [b,∞).

Step 2 One next shows that, for each β ≥ β0, vβ(w) − wv′β+(w) is a strictly increasing

function of w over [b, wp
β0

]. To this end, one only needs to check that v′′β+ < 0 over [b, wp
β0

).

For each β ≥ β0, it follows from (C.7) and Step 1 that

v′′β+ = u′′1+ + βu′′2+ < u′′1+ + β0u
′′
2+ = v′′β0+,

which is strictly negative over [b, wp
β0

) as shown in the proof of Proposition C.1.3. This

implies the claim.

Step 3 There are now two cases to consider.

Case 1 First, fix some β ≥ β0, and suppose that vβ(b) − bv′β+(b) < c. From Step 1, this

is the case whenever

β < β̂ =
c− u1(b) + bu′1+(b)

u2(b)− bu′2+(b)
. (C.21)

From Step 1 again, vβ(w) − wv′β+(w) ≥ vβ0(w) − wv′β0+(w) for all w ∈ [b, wp
β0

]. Hence, by

(C.12) and (C.20),

vβ(wp
β0

)− wp
β0

v′β(wp
β0

) ≥ vβ0(w
p
β0

)− wp
β0

v′β0
(wp

β0
) = vβ0(w

p
β0

) > c.

Since vβ(w)−wv′β+(w) is continuous and strictly increasing with respect to w over [b, wp
β0

] by

Step 2, there exists a unique wi
β ∈ (b, wp

β0
) such that vβ(wi

β)−wi
βv′β(wi

β) = c. It follows from

Step 1 that, as long as vβ(b) − bv′β+(b) < c, wi
β is strictly decreasing and continuous with

respect to β. One can then construct vβ,γ by setting it equal to vβ over [0, wi
β] and extending

it to (wi
β,∞) as stipulated in (C.18). Using the fact that vβ,γ(w

i
β) − wi

βv′β,γ−(wi
β) = c,

it is easy to check from (C.18) that v′β,γ−(wi
β) = v′β,γ+(wi

β) = v′β(wi
β). This, along with

(C.18), implies that vβ,γ is of class C1(R+\{b}). One can further show that vβ,γ is of class

Ck(R+\{b, ..., kb, wi
β, ..., wi

β + (k − 2)b}) for all k ∈ N\{0, 1}. To conclude, one must verify

that wi
β satisfies (C.19). A sufficient condition for this is that v′′β,γ+(wi

β) < 0. Differentiating

(C.5) and (C.18) at the right of wi
β and using the fact that vβ,γ = vβ over [b, wi

β] yields

[(ρ− γ)wi
β + λb]v′′β,γ+(wi

β) = λ[v′β(wi
β)− v′β+(wi

β − b)]− (ρ− r)[v′β(wi
β)− 1]
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= (ρwi
β + λb)v′′β+(wi

β)

which implies that v′′β,γ+(wi
β) < 0 since wi

β ∈ (b, wp
β0

) and, as shown in Step 2, v′′β+ < 0 over

[b, wp
β0

) whenever β ≥ β0.

Case 2 Next, fix some β ≥ β0, and suppose that β ≥ β̂ with β̂ given by (C.21), so that

vβ(b)− bv′β+(b) ≥ c. Define vβ,γ as the continuous solution to the delay differential equation





vβ,γ(w) = βw if w ∈ [0, b],

(r − γ)vβ,γ(w) = µ− λC − γc− (ρ− r)w + Lγvβ,γ(w) if w ∈ (b,∞),
(C.22)

reflecting that the intermediary region (b, wi
β] is empty. To show that this is consistent with

(C.19), one must verify that wi
β = b for all β ≥ max{β0, β̂}. In analogy with (C.7), for each

β ≥ β̂, it is convenient to decompose vβ,γ as follows:

vβ,γ = u1,γ + βu2,γ, (C.23)

where u1,γ and u2,γ are the continuous solutions to the delay differential equations





u1,γ(w) = 0 if w ∈ [0, b],

(r − γ)u1,γ(w) = µ− λC − γc− (ρ− r)w + Lγu1,γ(w) if w ∈ (b,∞)
(C.24)

and





u2,γ(w) = w if w ∈ [0, b],

(r − γ)u2,γ(w) = Lγu2,γ(w) if w ∈ (b,∞),
(C.25)

respectively. Proceeding as in Step 1, one can show that u′′2,γ+ < 0 over [b,∞), which implies

that if β > β′ ≥ β̂, then

vβ,γ(w)− wv′β,γ+(w) > vβ′,γ(w)− wv′β′,γ+(w)

for all w ≥ b. As vβ̂,γ(b) = vβ̂(b) = βb and v′
β̂,γ+

(b) = v′
β̂+

(b), which follows from (C.5)

and (C.22) along with the fact that vβ̂(b) − bv′
β̂+

(b) = c, one has vβ̂,γ(b) − bv′
β̂,γ+

(b) = c. If

β0 > β̂, one immediately obtains that vβ,γ(b) − bv′β,γ+(b) > c for all β > β0, which implies

that wi
β = b, as claimed. If β̂ ≥ β0, one must in addition check that v′′

β̂,γ+
(b) < 0. Arguing

as in Case 1 yields

(ρ− γ + λ)v′′
β̂,γ+

(b) = (ρ + λ)v′′
β̂+

(b)
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which implies that v′′
β̂,γ+

(b) < 0 since, as shown in Step 2, v′′
β̂+

< 0 over [b, wp
β0

) whenever

β̂ ≥ β0. The result follows. ¥

As for the functions (vβ)β≥0, a key result is that one can strictly order the derivatives of

the functions (vβ,γ)β≥β0 .

Proposition C.2.1 If β > β′ ≥ β0, then v′β,γ > v′β′,γ over R+\{b}.

Proof. If β > β′ ≥ β̂, with β̂ given by (C.21), the proof proceeds along the lines of that

of Proposition C.1.1, replacing the decomposition (C.7) into the auxiliary functions (C.8)

and (C.9) by the decomposition (C.23) into the auxiliary functions (C.24) and (C.25), and

showing similarly to Lemma C.1.1 that u′2,γ+ > 0 over R+\{b}. From now on, suppose

instead that β̂ ≥ β > β′. By Case 1 of Step 3 of the proof of Lemma C.2.1, wi
β′ > wi

β > b.

It immediately follows from (C.18) and Proposition C.1.1 that v′β,γ > v′β′,γ over [0, wi
β]\{b}.

The remainder of the proof consists of two steps.

Step 1 Consider first the interval [wi
β, wi

β′ ]. Since vβ,γ is of class C1(R+\{b}), one has

v′β,γ(w
i
β) = v′β(wi

β) > v′β′(w
i
β) = v′β′,γ(w

i
β),

where the inequality follows from Proposition C.1.1. Therefore, since vβ,γ − vβ′,γ is of class

C1(R+\{b}), one only needs to check that v′β,γ − v′β′,γ has no zero in (wi
β, wi

β′ ]. Arguing

by contradiction, let w̃ > wi
β be the first point at which v′β,γ − v′β′,γ vanishes. Note that

v′β,γ > v′β′,γ over [0, w̃)\{b}. Then, writing (C.18) for vβ,γ and vβ′,γ at w̃ and rearranging

yields

(r − γ)[vβ,γ(w̃)− vβ′,γ(w̃)] = γ[vβ′,γ(w̃)− w̃v′β′,γ(w̃)− c]

−λ[vβ,γ(w̃)− vβ,γ(w̃ − b)− vβ′,γ(w̃) + vβ′,γ(w̃ − b)].
(C.26)

Now, since w̃ ≤ wi
β′ ,

vβ′,γ(w̃)− w̃v′β′,γ(w̃) ≤ c.

Moreover, since v′β,γ > v′β′,γ over [0, w̃)\{b},

vβ,γ(w̃)− vβ,γ(w̃ − b) > vβ′,γ(w̃)− vβ′,γ(w̃ − b).

Substituting these two inequalities into (C.26), one obtains that vβ,γ(w̃) < vβ′,γ(w̃), which

is impossible since vβ,γ(0) = vβ,γ(0) = 0 and v′β,γ > v′β′,γ over [0, w̃)\{b}. This contradiction

establishes that v′β,γ > v′β′,γ over [wi
β, wi

β′ ].

Step 2 Consider next the interval [wi
β′ ,∞). By Step 1, v′β,γ(w

i
β′) > v′β′,γ(w

i
β′), and thus
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one only needs to check that v′β,γ − v′β′,γ has no zero in [wi
β′ ,∞). Arguing by contradiction,

let w̃ > wi
β′ be the first point at which v′β,γ − v′β′,γ vanishes. Observe that v′β,γ > v′β′,γ over

[0, w̃)\{b}. Then, writing (C.18) for vβ,γ and vβ′,γ at w̃ and rearranging yields

(r − γ)[vβ,γ(w̃)− vβ′,γ(w̃)] = −λ[vβ,γ(w̃)− vβ,γ(w̃ − b)− vβ′,γ(w̃) + vβ′,γ(w̃ − b)].

As in Step 1, one obtains that vβ,γ(w̃) < vβ′,γ(w̃), which is impossible. This contradiction

establishes that v′β,γ > v′β′,γ over [wi
β′ ,∞). The result follows. ¥

Proposition C.2.1 shows that the derivatives of the functions (vβ,γ)β≥β0 are strictly ordered

by their slopes β over [0, b). As in the no investment case of Section C.1, we now show that

the subfamily of (vβ,γ)β≥β0 composed of those functions whose derivatives have at least a

zero in (b,∞) has a maximal element.

Proposition C.2.2 There exists a maximum value βγ of β such that the equation v′β,γ = 0

has a solution over (b,∞). The function vβγ ,γ is increasing over R+ and βγ > β0.

The proof of Proposition C.2.2 proceeds as follows. We first show that the set of β ≥ β0

such that v′β,γ+(b) > 0 and v′β,γ has at least a zero in (b,∞) is a nonempty interval. Next, we

show that this interval is bounded. Then, we show that it is closed, so that it contains its

upper bound βγ. Finally, we show that the function vβγ ,γ is increasing over R+ and that I is

not reduced to a point, so that in particular βγ > β0. We now provide a detailed exposition

of each step of the proof.

Step 1 Let I = {β ≥ β0 |v′β,γ+(b) > 0 and (v′β,γ)
−1(0) 6= ∅}. One has the following result.

Lemma C.2.2 I is a nonempty interval.

Proof. That I is an interval is an immediate consequence of Proposition C.2.1. It remains

to show that I is nonempty. There are three cases to consider.

Case 1 Suppose first that β0 < β̂, with β̂ given by (C.21), which corresponds to Case

1 of Step 3 of the proof of Lemma C.2.1. One shows that in this case β0 ∈ I. One has

wi
β0
∈ (b, wp

β0
) and vβ0,γ = vβ0 over [0, wi

β0
] so clearly v′β0,γ+(b) > 0. Moreover, since vβ0,γ is

of class C1(R+\{b}), v′β0,γ(w
i
β0

) = v′β0
(wi

β0
). Finally,

v′′β0,γ+(wi
β0

)

v′′β0+(wi
β)

=
ρwi

β0
+ λb

(ρ− γ)wi
β0

+ λb
> 1,

which implies that v′′β0,γ+(wi
β0

) < v′′β0+(wi
β0

) since wi
β0
∈ (b, wp

β0
) and v′′β0+ < 0 over [b, wp

β0
)

as shown in the proof of Proposition C.1.3. It follows that v′β0,γ < v′β0
over an interval
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(wi
β0

, wi
β0

+ ε) for some ε > 0. One now shows that actually v′β0,γ < v′β0
over (wi

β0
, wp

β0
].

Since v′β0,γ(w
i
β0

) = v′β0
(wi

β0
), one only needs to check that v′β0,γ − v′β0

does not have a zero

in (wi
β0

, wp
β0

]. Arguing by contradiction, let w̃ > wi
β0

be the first point at which v′β0,γ − v′β0

vanishes. Observe that v′β0,γ ≤ v′β0
over [0, w̃)\{b}, this inequality being strict over (wi

β0
, w̃).

Then, writing (C.5) and (C.18) for vβ0 and vβ0,γ at w̃ and rearranging yields

(r − γ)[vβ0,γ(w̃)− vβ0(w̃)] = γ[vβ0(w̃)− w̃v′β0
(w̃)− c]

−λ[vβ0,γ(w̃)− vβ0,γ(w̃ − b)− vβ0(w̃) + vβ0(w̃ − b)].
(C.27)

Now, since w̃ ∈ (wi
β0

, wp
β0

] and v′′β0+ < 0 over [wi
β0

, wp
β0

),

vβ0(w̃)− w̃v′β0
(w̃) > c.

Moreover, since v′β0,γ ≤ v′β0
over [0, w̃)\{b},

vβ0,γ(w̃)− vβ0,γ(w̃ − b) ≤ vβ0(w̃)− vβ0(w̃ − b).

Substituting these two inequalities into (C.27), one obtains that vβ0,γ(w̃) > vβ0(w̃), which

is impossible since vβ0,γ(w
i
β0

) = vβ0(w
i
β0

) and v′β0,γ < v′β0
over (wi

β0
, w̃). This contradiction

establishes that v′β0,γ < v′β0
over (wi

β0
, wp

β0
]. As v′β0

(wp
β0

) = 0 and vβ0,γ is of class C1(R+\{b})
and has a strictly positive derivative at wi

β,γ , this implies that v′β0,γ has at least a zero in

(wi
β0

, wp
β0

). Thus β0 ∈ I, as claimed.

Case 2 Suppose next that β0 ≥ β̂, so that wi
β0

= b, which corresponds to Case 2 of Step

3 of the proof of Lemma C.2.1, and that v′β0,γ+(b) > 0. One shows that in this case also

β0 ∈ I. Writing (C.5) and (C.18) for vβ0 and vβ0,γ at the right of b and rearranging yields

(ρ− γ + λ)b[v′β0+(b)− v′β0,γ+(b)] = γ[vβ0(b)− bv′β0+(b)− c],

which is positive if β0 ≥ β̂, and strictly positive if β0 > β̂. Whenever β0 = β̂, one has

v′β0+(b) = v′β0,γ+(b) but v′′β0+(b) > v′′β0,γ+(b) since v′′β0+(b) < 0 by Lemma C.1.3 and

v′′β0,γ+(b)

v′′β0+(b)
=

ρ + λ

ρ− γ + λ
> 1.

Hence, in any case, v′β0,γ < v′β0
over an interval (b, b + ε) for some ε > 0. One can then show

as in Case 1 that actually v′β0,γ < v′β0
over (b, wp

β0
]. As v′β0

(wp
β0

) = 0 and vβ0,γ is of class

C1(R+\{b}) and has a strictly positive right derivative at b, this implies that v′β0,γ has at

least a zero in (b, wp
β0

). Thus β0 ∈ I, as claimed.
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Case 3 Suppose finally that β0 ≥ β̂, so that wi
β0

= b, and that v′β0,γ+(b) ≤ 0, that is, by

(C.22), and in analogy with (C.6):

v′β0,γ+(b) =
(ρ− r)b− µ + λC + γc

(ρ− γ + λ)b
+ β0

r − γ + λ

ρ− γ + λ
≤ 0.

Define then β′0 > β0 as the unique solution to the equation v′β′0,γ+(b) = 0,

β′0 =
µ− λC − γc− (ρ− r)b

(r − γ + λ)b
.

Arguing by contradiction, suppose that v′β,γ > 0 over (b,∞) for all β > β′0. Given the

decomposition (C.23), which is valid for all β ≥ β̂, it follows by taking limits as β decreases

to β′0 that v′β′0,γ ≥ 0 over (b,∞). Yet, differentiating (C.22) at the right of b and using the

fact that v′β′0,γ+(b) = 0 along with (C.14) leads to

(ρ− γ + λ)bv′′β′0,γ+(b) = −λβ′0 + ρ− r < −λβ0 + ρ− r <
λ[(ρ− r)b− µ + λC]

(r + λ)b
+ ρ− r,

which is strictly negative under (C.4). Since v′β′0,γ+(b) = 0, this implies that v′β′0,γ+ < 0 in an

interval (b, b + ε) for some ε > 0, a contradiction. It follows that there exists some β′′0 > β′0
such that v′β′′0 ,γ has at least a zero in (b,∞). Since v′β′′0 ,γ+(b) > v′β′0,γ+(b) = 0 as β′′0 > β′0, it

follows that β′′0 ∈ I. Note that, unlike in Cases 1 and 2, this argument establishes that I has

a nonempty interior since any β ∈ (β′0, β
′′
0 ) also belongs to I. The result follows. ¥

Step 2 The following result shows that the interval I is bounded.

Lemma C.2.3 For β large enough, the equation v′β,γ = 0 has no solution over (b,∞).

Proof. Consider the functions u1,γ and u2,γ defined by (C.24) and (C.25). As observed in

the proof of Proposition C.2.1, it is easy to check along the lines of the proof of Lemma

C.1.1 that u′2,γ > 0 over R+\{b}. Similarly, it is easy to check along the lines of the proof

of Lemma C.1.2 that lim supw→∞ u′1,γ(w) ≥ 1. Combining these observations with the fact

that the function −u′1,γ+

u′2,γ+
is continuous over [b,∞) as u1,γ and u2,γ are of class C1(R+\{b}),

one obtains that

sup
w∈[b,∞)

{
− u′1,γ+(w)

u′2,γ+(w)

}
< ∞. (C.28)

Defining β̂ as in (C.21), the decomposition (C.23) then implies that whenever

β > max

{
β̂, sup

w∈[b,∞)

{
− u′1,γ+(w)

u′2,γ+(w)

}}
,

v′β,γ has no zero in (b,∞). The result follows. ¥
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Remark The supremum in (C.28) is actually a maximum. As shown in Lemma C.2.7, the

conditions (C.4) and (C.20) imply that µ− λC − γc > (ρ− r)b, so that by (C.24)

u′1,γ+(b) =
(ρ− r)b− µ + λC + γc

(ρ− γ + λ)b
< 0. (C.29)

Since by (C.25)

u′2,γ+(b) =
r − γ + λ

ρ− γ + λ
> 0, (C.30)

it follows that −u′1,γ+(b)

u′2,γ+(b)
> 0. As the function −u′1,γ+

u′2,γ+
is continuous and takes strictly negative

values beyond some point, it must therefore attain its maximum over [b,∞).

Step 3 Denote by βγ the upper bound of the interval I, which is finite by Lemma C.2.3.

We now show that βγ ∈ I. For each β ∈ I, let wp
β,γ = inf {(v′β,γ)

−1(0)} > b. Observe that

since v′β,γ+(b) > 0 whenever β ∈ I, for any such β the function v′β,γ remains strictly positive

over the interval (b, wp
β,γ). As the derivatives of the functions (vβ,γ)β∈I are strictly ordered

by their slopes β over [0, b), it follows that wp
β,γ is strictly increasing with respect to β over I.

The following result implies that the family (wp
β,γ)β∈I is uniformly bounded above, so that

wp
β,γ converges to a finite limit when β converges to βγ from below.

Lemma C.2.4 For each ε > 0, there exists wε > b such that v′β,γ(w) > 1− ε for all β ≥ β0

and w ≥ wε.

Proof. One shows that lim infw→∞ v′β0,γ(w) ≥ 1, which implies the result by Proposition

C.2.1. It is convenient to decompose vβ0,γ as follows:

vβ0,γ = u1,γ,0 + βu2,γ,0, (C.31)

where u1,γ,0 and u2,γ,0 are the continuous solutions to the delay differential equations





u1,γ,0(w) = u1(w) if w ∈ [0, wi
β0

],

(r − γ)u1,γ,0(w) = µ− λC − γc− (ρ− r)w + Lγu1,γ,0(w) if w ∈ (wi
β0

,∞)
(C.32)

and





u2,γ,0(w) = u2(w) if w ∈ [0, wi
β0

],

(r − γ)u2,γ,0(w) = Lγu2,γ,0(w) if w ∈ (wi
β0

,∞),
(C.33)

respectively. Note that whenever β0 ≥ β̂, with β̂ given by (C.21), one has wi
β0

= b, in which

case u1,γ,0 = u1,γ and u2,γ,0 = u2,γ, where u1,γ and u2,γ are defined by (C.24) and (C.25). One
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can easily show that u1,γ,0 and u2,γ,0 are of class C1(R+\{b, wi
β0
}). The proof then proceeds

along the lines of Lemmas C.1.1 and C.1.2.

First, one shows that u′2,γ,0 > 0 over R+\ {b, wi
β0
}. From (C.33) and Lemma C.1.1,

u′2,γ,0 = u′2 > 0 over the set [0, wi
β0

)\{b}. Consider now the interval (wi
β0

,∞). From (C.33),

it is easy to check that

u′2,γ,0+(wi
β0

) =
(r − γ)u2(w

i
β0

) + λ[u2(w
i
β0

)− u2(w
i
β0
− b)]

(ρ− γ)wi
β0

+ λb
> 0.

Thus, since u2,γ,0 is of class C1(R+\{b, wi
β0
}), one only needs to check that u′2,γ,0 has no zero

in (wi
β0

,∞). The proof mimics that of the similar claim about u′2 in Lemma C.1.1, and is

therefore omitted.

Second, one shows that lim infw→∞ u′1,γ,0(w) ≥ 1, which completes the proof given (C.31).

Suppose first by way of contradiction that lim infw→∞ u′1,γ,0(w) = −∞. Then there exists

an increasing divergent sequence (wn)n≥1 in (wi
β0

+ b,∞) such that limn→∞ u′1,γ,0(wn) = −∞
and wn = arg minw∈[0,wn]{u′1,γ,0+(w)}. For each n ≥ 1, one can find some w̃n ∈ (wn − b, wn)

such that

[(ρ− γ)wn + λb]u′1,γ,0(wn) = λ[u1,γ,0(wn)− u1,γ,0(wn − b)] + (r − γ)u1,γ,0(wn)

+ (ρ− r)wn − µ + λC + γc

= λbu′1,γ,0(w̃n) + (r − γ)u1,γ,0(wn) + (ρ− r)wn − µ + λC + γc,

where the first equality follows from (C.32) and the second from the mean value theorem.

Since u1,γ,0(wn) ≥ u1(w
i
β0

) + u′1,γ,0(wn)(wn − wi
β0

) by construction of the sequence (wn)n≥1,

it is easy to verify as in the proof of Lemma C.1.2 that, for n large enough,

u′1,γ,0(w̃n)

u′1,γ,0(wn)
≥ (ρ− r)wn

λb
+

µ− λC − γc− (r − γ)u1(w
i
β0

)

λbu′1,γ,0(wn)
,

so that the ratio
u′1,γ,0(w̃n)

u′1,γ,0(wn)
goes to ∞ as n goes to ∞, which in turn contradicts the fact that

wn = arg minw∈[0,wn]{u′1,γ,0+(w)}. Thus lim infw→∞ u′1,γ,0(w) > −∞. Assume without loss

of generality that lim infw→∞ u′1,γ,0(w) is a finite number lγ. Proceeding as in the proof of

Lemma C.1.2, one obtains that there exists a divergent sequence (w̃n)n≥1 such that

(ρ− r)(lγ − 1) ≥ λb lim sup
n→∞

u′1,γ,0(w̃n)

wn

.

If lγ < 1, this implies that lim supn→∞ u′1,γ,0(w̃n) = −∞, which in turn contradicts the

finiteness of lγ = lim infw→∞ u′1,γ,0(w). Hence lγ ≥ 1, and the result follows. ¥
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Let wp
βγ ,γ > b be the limit of wp

β,γ when β converges to βγ from below. For each β ∈ I,

v′β,γ(w
p
β,γ) = 0. To establish that I contains its upper bound βγ, we need to show that this

equality also holds at βγ. This immediately follows from the following result, which states

that the derivatives of the functions (vβ,γ)β≥β0 vary continuously with β.

Lemma C.2.5 Let (βn)n≥1 be a sequence in [β0,∞) that converges to β∞. Then the sequence

(v′βn,γ)n≥1 converges locally uniformly to v′β∞,γ over R+\ {b}.

Proof. One will repeatedly use the following simple technical fact.

Fact 1 Let (gn)n≥1 be a sequence of real valued continuous functions that converges uniformly

to a function g∞ over a compact subset K of R, and let (an)n≥1 and (bn)n≥1 be two sequences

in R converging to a∞ and b∞. Then, if J is a compact subset of R for which there exists

n0 ≥ 1 such that bnJ ⊂ K for all n ≥ n0, the sequence (angn◦(bnId))n≥1 converges uniformly

to a∞g∞ ◦ (b∞Id) over J .

Proof. Note first that g is continuous over K, being the uniform limit of the sequence of

continuous functions (gn)n≥1. By assumption, bnx ∈ K for all n ≥ n0 and x ∈ J , and thus

b∞x ∈ K for all x ∈ J since the sequence (bn)n≥1 converges to b∞ and K is compact. For

each n ≥ n0 and x ∈ J ,

|angn(bnx)− a∞g∞(b∞x)| ≤ |an||gn(bnx)− g∞(bnx)|

+ |an − a∞||g∞(bnx)|

+ |a∞||g∞(bnx)− g∞(b∞x)|.

(C.34)

Consider now each term on the right-hand side of (C.34). For each n ≥ n0 and x ∈ J ,

|an||gn(bnx)− g∞(bnx)| ≤ sup
n≥n0

{|an|}‖gn − g∞‖K ,

which converges to 0 when n goes to ∞ because the sequence (gn)n≥1 converges uniformly

to g∞ over K. Next, for each n ≥ n0 and x ∈ J ,

|an − a∞||g∞(bnx)| ≤ |an − a∞|‖g∞‖K ,

which converges to 0 when n goes to ∞ because the sequence (an)n≥1 converges to a∞.

Finally, for each n ≥ n0 and x ∈ J ,

|g∞(bnx)− g∞(b∞x)| ≤ sup
{(y,y′)∈K2 | |y−y′| ≤ |bn−b∞| sup J}

{|g∞(y)− g∞(y′)|},
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which converges to 0 when n goes to ∞ because the sequence (bn)n≥1 converges to b∞ and

because, by the Heine–Cantor theorem, the function g∞ is uniformly continuous over K as

it is continuous over K and K is compact. Substituting these three uniform bounds into

(C.34) yields the result. ¥

One can now proceed with the proof of Lemma C.2.5. It is sufficient to prove the result for

monotone sequences (βn)n≥1 that converge to β∞ from below or from above. Focus without

loss of generality on the first case. According to Proposition C.2.1, the derivatives of the

functions (vβn,γ)n≥1 over R+\{b} are ordered by their slopes (βn)n≥1 over [0, b). As a result,

the sequence (vβn,γ)n≥1 is increasing and bounded above by vβ∞,γ over R+, and thus it has a

pointwise limit over R+, hereafter denoted by ṽβ∞,γ. Now, fix some compact interval [w,w]

of R+. By Proposition C.2.1 again, the following holds for each n ≥ 1 and w ∈ [w,w]:

min
y∈[w,w]

{v′β1,γ+(y)} ≤ v′βn,γ+(w) ≤ max
y∈[w,w]

{v′β∞,γ+(y)},

hence the sequence (vβn,γ)n≥1 is equicontinuous over [w,w]. Since [w,w] is an arbitrary

compact interval of R+, the sequence (vβn,γ)n≥1 converges locally uniformly to its pointwise

limit ṽβ∞,γ by the Arzelà–Ascoli theorem. To translate this into a uniform convergence

result for the sequence (v′βn,γ)n≥1, it is convenient to change variables as follows. For each

(β, z) ∈ [β0,∞) × R+, define vi
β,γ(z) = vβ,γ(w

i
βz), and similarly let ṽi

β∞,γ(z) = ṽβ∞,γ(w
i
β∞z).

Observe also for further reference that for each β ≥ β0, vi
β,γ satisfies the following delay

differential equation:





vi
β,γ(z) = vβ(wi

βz) if z ∈ [0, 1],

(r − γ)vi
β,γ(z) = µ− λC − γc− (ρ− r)wi

β,γz + Lβ,γv
i
β,γ(z) if z ∈ (1,∞),

(C.35)

where Lβ,γ is a linear first-order delay differential operator defined by

Lβ,γu(z) =

[
(ρ− γ)z +

λb

wi
β

]
u′(z)− λ

[
u(z)− u

(
z − b

wi
β

)]
(C.36)

for all z > 1 and any continuous function u of class C1
(
R+\

{
b

wi
β

})
. From Lemma C.2.1,

the sequence (wi
βn

)n≥1 is decreasing and converges to wi
β∞ . Now, fix some interval J = [z, z]

of R+, and apply Fact 1 to the sequence (gn)n≥1 = (vβn,γ)n≥1 that converges uniformly to

g∞ = ṽβ∞,γ over the interval K = [wi
β∞z, wi

β1
z] and to the sequences (an)n≥1 = (1)n≥1 and

(bn)n≥1 = (wi
βn

)n≥1 with limits a∞ = 1 and b∞ = wi
β∞ . Since the interval J is arbitrary,

it follows that the sequence (angn ◦ (bnId))n≥1 = (vi
βn,γ)n≥1 converges locally uniformly to

a∞g∞ ◦ (b∞Id) = ṽi
β∞,γ over R+. One now shows that ṽi

β∞,γ = vi
β∞,γ or equivalently, letting
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δβn = vi
β∞,γ − vi

βn,γ for all n ≥ 1, that δ, the locally uniform limit of the sequence (δβn)n≥1,

is identically equal to 0. Consider first the interval [0, 1]. For each n ≥ 1 and z ∈ [0, 1], one

has by (C.35)

δβn(z) = vβ∞(wi
β∞z)− vβn(wi

βn
z). (C.37)

The decomposition (C.7) implies that the sequence (vβn)n≥1 converges locally uniformly to

vβ∞ . Therefore, since the sequence (wi
βn

)n≥1 converges to wi
β∞ , it follows from (C.37) that

the sequence (δβn(z))n≥1 converges to 0 for all z ∈ [0, 1] and thus that δ = 0 over [0, 1].

Consider next the interval (1, z], for some given z > 1. For each n ≥ 1 and z ∈ (1, z], one

has by (C.35) and (C.36)

(r − γ)δβn(z) =

[
(ρ− γ)z +

λb

wi
β∞

]
δ′βn

(z) + λb

(
1

wi
β∞

− 1

wi
βn

)
vi′

βn,γ(z)

− (ρ− r)(wi
β∞ − wi

βn
)z (C.38)

−λ

[
δβn(z)− δβn

(
z − b

wi
β∞

)]
+ λ

[
vi

βn,γ

(
z − b

wi
β∞

)
− vi

βn,γ

(
z − b

wi
βn

)]
.

Now, the sequence (wi
βn

)n≥1 converges to wi
β∞ . Moreover, the sequence (δβn)n≥1 converges

uniformly over (1, z]. Finally the sequence (vi′
βn,γ+)n≥0 is uniformly bounded over [0, z] since,

by Proposition C.2.1 and the definition of the functions (vi
β,γ)β≥0,

∣∣vi′
βn,γ+(z)

∣∣ ≤ wi
β1

max

{∣∣∣∣ inf
w∈[0,wi

β1
z]
{v′β1,γ+(w)}

∣∣∣∣ ,

∣∣∣∣ sup
w∈[0,wi

β1
z]

{v′β∞,γ+(w)}
∣∣∣∣
}

for all n ≥ 1 and z ∈ [0, z]. Using these three observations along with (C.38), one then

obtains that the sequence (δ′βn
)n≥1 converges uniformly over (1, z]. Since δβn is of class

C1
(
R+\

{
b

wi
βn

})
and b

wi
βn

≤ 1 for all n ≥ 1, it follows from the fundamental theorem of

calculus that the uniform limit over (1, z] of the sequence (δ′βn
)n≥1 must be equal to the

derivative δ′ of δ. Taking limits in (C.38) as n goes to ∞ then reveals that δ is the unique

continuous solution over [0, z] to the delay differential equation





δ(z) = 0 if z ∈ [0, 1],

(r − γ)δ(z) = Lβ∞,γδ(z) if z ∈ (1, z].
(C.39)

But the constant function everywhere equal to 0 is clearly a continuous solution to (C.39) over
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[0, z]. Since z is arbitrary, one obtains that δ = 0 over R+, as claimed. Thus the sequence

(vi
βn,γ)n≥1 converges locally uniformly to vi

β∞,γ. Now consider the derivatives of the functions

(vi
βn,γ)n≥1. It has already been established that the sequence (vi′

βn,γ)n≥1 converges locally

uniformly to vi′
β∞,γ over (1,∞). If wi

β∞ = b, this is all what is needed in what follows. If

wi
β∞ > b, one must in addition prove that the sequence (vi′

βn,γ)n≥1 converges locally uniformly

to vi′
β∞,γ over

(
b

wi
β∞

, 1
]
. For each n ≥ 1 and z ∈ (

b
wi

β∞
, 1

]
, one has by (C.7) and (C.35)

vi′
βn,γ(z) = wi

βn
v′βn

(wi
βn

z) = wi
βn

[u′1(w
i
βn

z) + βnu′2(w
i
βn

z)].

Given this decomposition, fix some interval J = [z, z] of
(

b
wi

β∞
, 1

]
, and apply Fact 1 to

the sequence (gn)n≥1 = (u′1 + βnu
′
2)n≥1 that converges uniformly to g∞ = u′1 + β∞u′2 over

the interval K = [wi
β∞z, wi

β1
z] and to the sequences (an)n≥1 = (bn)n≥1 = (wi

βn
)n≥1 with

limits a∞ = b∞ = wi
β∞ . Since the interval J is arbitrary, it follows that the sequence

(angn ◦ (bnId))n≥1 = (vi′
βn,γ)n≥1 converges locally uniformly to a∞g∞ ◦ (b∞Id) = vi′

β∞,γ over
(

b
wi

β∞
, 1

]
. Combining this with the previous result, one thus obtains that the sequence

(vi′
βn,γ)n≥1 converges locally uniformly to vi′

β∞,γ over
(

b
wi

β∞
,∞)

. It remains to show that this

implies that the sequence (v′βn,γ)n≥1 converges locally uniformly to v′β∞,γ over (b,∞). Note

that since the sequence (wi
βn

)n≥1 converges to wi
β∞ , for any interval J = [w,w] of (b,∞) and

for each ε > 0, there exists some n0(J, ε) ≥ 1 such that w
wi

βn

≥ w−ε
wi

β∞
for all n ≥ n0(J, ε) and

w ∈ J , so that, letting K =
[

w−ε
wi

β∞
, w

wi
β∞

]
, 1

wi
βn

J ⊂ K for all n ≥ n0(J, ε). Now, choose ε > 0

such that w − ε > b, and apply Fact 1 to the sequence (gn)n≥1 = (vi′
βn,γ)n≥1 that converges

uniformly to g∞ = vi′
β∞,γ over K and to the sequences (an)n≥1 = (bn)n≥1 =

(
1

wi
βn

)
n≥1

with

limits a∞ = b∞ = 1
wi

β∞
. Since the interval J is arbitrary, it follows that the sequence

(angn ◦ (bnId))n≥1 = (v′βn,γ)n≥1 converges locally uniformly to a∞g∞ ◦ (b∞Id) = v′β∞,γ over

(b,∞). Finally, since the sequence (βn)n≥1 converges to β∞, the uniform convergence of

(v′βn,γ)n≥1 to (v′β∞,γ)n≥1 over [0, b) follows immediately from (C.18). Hence the result. ¥

To complete the proof of Proposition C.2.2, we only need to check that vβγ ,γ is increasing

over R+ and that βγ > β0. The first of these claims follows from considering a strictly

decreasing sequence (βn)n≥1 converging to βγ. By construction of βγ, the derivatives of

the functions (vβn,γ)n≥1 are strictly positive over R+\{b}, and according to Lemma C.2.5

the sequence (v′βn,γ)n≥1 converges locally uniformly to v′βγ ,γ over R+\{b}. Hence v′βγ ,γ ≥ 0

over R+\{b}, which implies the first claim as vβγ ,γ is continuous over R+. To prove the

second claim, we have to go back to the proof of Lemma C.2.2, where three cases were

distinguished. In Case 3, we already observed that βγ > β0. In Cases 1 and 2, we established
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that v′β0,γ(w
p
β0

) < 0. Hence, since v′βγ ,γ(w
p
β0

) ≥ 0 by the above argument, it follows from

Proposition C.2.1 that βγ > β0. This concludes the proof of Proposition C.2.2.

In the remainder of this section, we study the concavity of the function vβγ ,γ. The

following proposition summarizes our findings.

Proposition C.2.3 vβγ ,γ is concave over [0, wp
βγ ,γ], and strictly so over [b, wp

βγ ,γ].

The proof of Proposition C.2.3 is very similar to that of Proposition C.1.3. It proceeds

through a sequence of lemmas.

Lemma C.2.6 v′′βγ ,γ+(wi
βγ

) < 0.

Proof. There are two cases to consider.

Case 1 Suppose first that βγ < β̂, with β̂ given by (C.21). This corresponds to Case 1 of

Step 3 of the proof of Lemma C.2.1. Since βγ > β0, the result follows along the same lines.

Case 2 Suppose next that βγ ≥ β̂. Then wi
βγ

= b. This corresponds to Case 2 of Step

3 of the proof of Lemma C.2.1. The function vβγ ,γ can then be decomposed as in (C.23).

Since u′′2,γ+ < 0 over [b,∞) and v′′
β̂,γ+

(b) < 0, the result follows. ¥

Lemma C.2.7 v′′βγ ,γ+ is upper semicontinuous over [wi
βγ

,∞).

Proof. By construction, wi
βγ
≥ b. If wi

βγ
≥ 2b, the result is immediate since vβγ ,γ is of

class C2(R+\{b, 2b, wi
βγ
}). If wi

βγ
< 2b, one only needs to check that v′′βγ ,γ+(2b) > v′′βγ ,γ−(2b).

Differentiating (C.18) both at the left and at the right of any w > b and using the fact that

vβγ ,γ is of class C1(R+\{b}) leads to

[(ρ− γ)w + λb][v′′βγ ,γ+(w)− v′′βγ ,γ−(w)] = λ[v′βγ ,γ−(w − b)− v′βγ ,γ+(w − b)]. (C.40)

There are now two cases to consider.

Case 1 Suppose first that βγ < β̂, with β̂ given by (C.21). This corresponds to Case 1 of

Step 3 of the proof of Lemma C.2.1. Then v′β,γ+(b) = v′βγ+(b), and applying formula (C.40)

at 2b and using (C.6) yields that v′′βγ ,γ+(2b) > v′′βγ ,γ−(2b), as claimed.

Case 2 Suppose next that βγ ≥ β̂. Then wi
βγ

= b. This corresponds to Case 2 of Step 3

of the proof of Lemma C.2.1. Applying formula (C.40) at 2b and using (C.29) and (C.30)

yields that v′′βγ ,γ+(2b) > v′′βγ ,γ−(2b) if and only if
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v′βγ ,γ+(b) =
(ρ− r)b− µ + λC + γc

(ρ− γ + λ)b
+ βγ

r − γ + λ

ρ− γ + λ
< βγ = v′βγ ,γ−(b).

A sufficient condition for this to be true is that µ−λC−γc > (ρ− r)b. Now, since wp
βγ ,γ > b

and v′βγ ,γ(w
p
βγ ,γ) = 0, one has by (C.18)

µ− λC − γc− (ρ− r)b > µ− λC − γc− (ρ− r)wp
βγ ,γ

= (r − γ)vβγ ,γ(w
p
βγ ,γ) + λ[vβγ ,γ(w

p
βγ ,γ)− vβγ ,γ(w

p
βγ ,γ − b)],

which is strictly positive since vβγ ,γ is strictly increasing and strictly positive over (0, wp
βγ ,γ].

Hence the result. ¥

Remark It should be noted that the inequality µ−λC−γc > (ρ− r)b derived in the proof

of Lemma C.2.7 is a consequence of our standing assumptions (C.4) and (C.20), from which

the whole analysis conducted so far follows. It may at first seem a bit odd that a parameter

restriction involving γ can in this way be obtained from two conditions from which γ is

absent. This apparent paradox results from the assumption of constant returns to scale,

which implies that the desirability of investment depends in a bang-bang way on the level

of the agent’s size-adjusted payoff. It follows that size growth when it takes place does so

at a constant rate, which essentially amounts to an equal reduction in the principal’s and in

the agent’s discount rates. The only restriction to which γ is subjected to is thus that it be

strictly lower than the least of these discount rates, that is γ < r.

It follows from Lemma C.2.7 that the set {w ≥ wi
βγ
|v′′βγ ,γ+(w) ≥ 0} is closed. Denote by

wc
βγ ,γ its smallest element. By Lemma C.2.6, wc

βγ ,γ > wi
βγ

and v′′βγ ,γ+ < 0 over [wi
βγ

, wc
βγ ,γ).

Thus vβγ ,γ is strictly concave over [wi
βγ

, wc
βγ ,γ]. Moreover, vβγ ,γ coincides with vβγ over [0, wi

βγ
].

Since βγ > β0 and u2 is concave over R+ as shown in Step 1 of the proof of Lemma C.2.1,

the decomposition (C.7) implies that v′′βγ ,γ+ ≤ v′′β0+ over [0, wi
βγ

). As wi
βγ

< wp
β0

by Lemma

C.2.1, and vβ0 is concave over [0, wp
β0

], and strictly so over [b, wp
β0

] by Proposition C.1.3, it

follows that vβγ ,γ is concave over [0, wi
βγ

], and strictly so over [b, wi
βγ

]. Finally, observe that

either v′βγ ,γ+(wi
βγ

) = v′βγ ,γ−(wi
βγ

) if wi
βγ

> b as shown in Case 1 of Step 3 of the proof of

Lemma C.2.1, or v′βγ ,γ+(wi
βγ

) < v′βγ ,γ−(wi
βγ

) if wi
βγ

= b as shown in Case 2 of the proof of

Lemma C.2.7. Thus vβγ ,γ is concave over [0, wc
βγ ,γ]. To complete the proof of Proposition

C.2.3, we now show that wp
βγ ,γ coincides with wc

βγ ,γ. We shall need the following result.

Lemma C.2.8 wc
βγ ,γ ≥ 2b.

Proof. Suppose by way of contradiction that wc
βγ

< 2b. Then, as wc
βγ ,γ > b and vβγ ,γ is of
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class C2(R+\{b, 2b, wi
βγ
}), v′′βγ ,γ(w

c
βγ ,γ) = 0 and v′′βγ ,γ < 0 over (wi

βγ
, wc

βγ ,γ). There are three

cases to consider.

Case 1 Suppose first that λ ≤ ρ − r. Proceeding as in Case 1 of the proof of Lemma

C.1.5, one obtains that βγ ≤ ρ−r
λ

. Using (C.14) in combination with βγ > β0 then shows

that this is in contradiction with (C.4).

Case 2 Suppose next that λ ≥ 2ρ − r − γ. One closely follows Case 2 of the proof of

Lemma C.1.5. Differentiating (C.18) twice over (wi
βγ

, 2b), which is feasible as wi
βγ

+ b ≥ 2b,

one obtains that v′′′βγ ,γ ≤ 0 over this interval, and hence v′′βγ ,γ(w
c
βγ ,γ) ≤ v′′βγ ,γ+(wi

βγ
). This

leads to a contradiction since v′′βγ ,γ(w
c
βγ ,γ) = 0 and v′′βγ ,γ+(wi

βγ
) < 0 by Lemma C.2.6.

Case 3 Suppose finally that ρ − r < λ < 2ρ − r − γ. Arguing as in Case 3 of the proof

of Lemma C.1.5, one obtains that v′′′βγ ,γ > 0 and hence v′′βγ ,γ > v′′βγ ,γ+(wi
βγ

) over (wi
βγ

, wc
βγ ,γ],

which in turn implies that

v′′βγ ,γ(w
c
βγ ,γ) <

[
1 +

∫ wc
βγ,γ

wi
βγ

λ− 2ρ + r + γ

(ρ− γ)w + λb
dw

]
v′′βγ ,γ+(wi

βγ
).

Since v′′βγ ,γ(w
c
βγ ,γ) = 0 and v′′βγ ,γ+(wi

βγ
) < 0 by Lemma C.2.6, this yields a contradiction as

1 +

∫ wc
βγ,γ

wi
βγ

λ− 2ρ + r + γ

(ρ− γ)w + λb
dw > 1 +

∫ 2b

b

λ− 2ρ + r + γ

(ρ− γ)w + λb
dw >

2λ− ρ + r

ρ− γ + λ
> 0.

The result follows. ¥

Proposition C.2.3 is then an immediate consequence of the following result.

Lemma C.2.9 wp
βγ ,γ = wc

βγ ,γ.

Proof. Since vβγ ,γ is increasing and v′βγ ,γ(w
p
βγ ,γ) = 0 by Proposition C.2.2, one must have

v′′βγ ,γ+(wp
βγ ,γ) ≥ 0, and thus wp

βγ ,γ ≥ wc
βγ ,γ. It remains therefore to prove that wp

βγ ,γ ≤ wc
βγ ,γ.

The proof closely follows that of Lemma C.1.6. One first shows that v′′βγ ,γ > 0 over an interval

(wc
βγ ,γ, w

c
βγ ,γ +ε) for some ε > 0. One then shows that, if wp

βγ ,γ > wc
βγ ,γ, then v′′βγ ,γ must have

a zero in (wc
βγ ,γ, w

p
βγ ,γ). Letting w̃ be the least of the points at which v′′βγ ,γ vanishes, one next

shows by differentiating (C.18) twice at the right of w̃ that w̃ − b ≥ wc
βγ ,γ, which in turn

implies that vβγ ,γ is convex over [w̃ − b, w̃]. Using this information along with the fact that

v′′βγ ,γ(w̃) = 0, one can establish by differentiating (C.18) at w̃ that v′βγ ,γ(w̃) ≥ 1. Finally, using

inequalities similar to (C.15) reveals that this implies that vβγ ,γ(w̃) > µ−λC−γc
r−γ

. This leads to
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a contradiction since w̃ < wp
βγ ,γ and, as is easily checked from (C.18), vβγ ,γ(w

p
βγ ,γ) < µ−λC−γc

r−γ
.

The result follows. ¥

To simplify notation, we shall hereafter write wi and wp instead of wi
βγ

and wp
βγ ,γ. The

function v defined by

v(w) = vβγ ,γ(w) ∧ vβγ ,γ(w
p)

for all w ≥ 0 is the unique solution to (C.1) that satisfies the requirements (i) to (iii) laid

down at the beginning of this section. Our candidate for the optimal value function of the

principal is the function f defined by f(w) = v(w) − w for all w ≥ 0. This function is

linear over [0, b], and affine with slope −1 over [wp,∞). Moreover, it is concave over R+,

and strictly so over [b, wp]. Finally, f(w)−wf ′(w) > c if and only if w > wi. This completes

the proof of Proposition 2. ¥

D The Verification Theorem

In this appendix, we establish that, under conditions (C.4) and (C.20), the function F defined

by F (X, W ) = Xf
(

W
X

)
for all (X, W ) ∈ R++×R+ is the principal’s optimal value function.

D.1 An Upper Bound for the Principal’s Expected Payoff

In this section, we show that the function F provides an upper bound for the expected payoff

that the principal obtains from any incentive compatible contract that incites the agent to

always exert effort. The following lemma is crucial in establishing this result. Observe that

f is of class C1(R+\{b}), just as v, so that f ′+ = f ′ over (b,∞).

Lemma D.1.1 Whenever 0 ≤ g ≤ γ and w ≥ b,

[(ρ− g)w + λb]f ′+(w)− λ[f(w)− f(w − b)]− (r − g)f(w) ≤ −µ + λC + gc. (D.1)

Proof. There are three cases to consider.

Case 1 Suppose first that w ∈ [b, wi). Then

(ρw + λb)f ′+(w)− λ[f(w)− f(w − b)]− rf(w) = −µ + λC

and

f(w)− wf ′+(w) < c,
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from which (D.1) follows as g ≥ 0.

Case 2 Suppose next that w ∈ [wi, wp). Then

[(ρ− γ)w + λb]f ′+(w)− λ[f(w)− f(w − b)]− (r − γ)f(w) = −µ + λC + γc

and

f(w)− wf ′+(w) ≥ c,

from which (D.1) follows as g ≤ γ.

Case 3 Suppose finally that w ∈ [wp,∞). Then

Lγv(w) − (r − γ)v(w)− (ρ− r)w + µ− λC − γc

= −λ[v(wp)− v(w − b)]− (r − γ)v(wp)− (ρ− r)w + µ− λC − γc,

= λ[v(w − b)− v(wp − b)]− (ρ− r)(w − wp)

≤ [λv′+(wp − b)− ρ + r](w − wp)

= −[(ρ− γ)wp + λb]v′′βγ ,γ+(wp)(w − wp)

≤ 0,

where the first equality follows from the fact that v is constant above wp, the second equality

from substituting Lγv(wp) − (r − γ)v(wp) = (ρ − r)wp − µ + λC + γc into the second line

and from observing that v′(wp) = 0, the first inequality from the concavity of v, the third

equality from the fact that v′+(wp − b) = v′βγ ,γ+(wp − b), from differentiating (C.18) at the

right of wp and from observing that v′βγ ,γ(w
p) = 0, and the last inequality from the fact that

vβγ ,γ is increasing and that v′βγ ,γ(w
p) = 0. One thus has

[(ρ− γ)w + λb]f ′(w)− λ[f(w)− f(w − b)]− (r − γ)f(w) ≤ −µ + λC + γc,

and the result follows as in Case 2. ¥

Then the following holds.

Proposition D.1.1 Suppose that conditions (C.4) and (C.20) hold. Then, for any contract

Γ = (X,L, τ) that induces maximal risk prevention Λt = λ for all t ∈ [0, τ), and yields the
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agent an initial expected payoff W0− given an initial project size X0, one has

F (X0,W0−) ≥ E

[∫ τ

0

e−rt{Xt[(µ− gtc)dt− CdNt]− dLt}
]
, (D.2)

so that the principal’s initial expected payoff is at most F (X0,W0−).

Proof. Fix an arbitrary contract Γ = (X, L, τ) that has the required properties. Since

Λt = λ for all t ∈ [0, τ), one has PΛ = P, see Appendix A. For simplicity, one shall drop

the mention of the contract Γ and of the effort process Λ in the remainder of the proof. The

agent’s continuation payoff follows a process W whose dynamics is described by (13) with

Λt = λ. In line with the assumption that X is FN–predictable while W is FN–adapted,

there is no loss of generality in assuming that X has left-continuous paths, while W has

right-continuous paths. The limited liability and incentive compatibility constraints imply

that
Wt−
Xt

≥ b for all t ∈ [0, τ). Now, observe that because f is of class C1((b,∞)), F is of

class C1({(X, W ) ∈ R++× R+ | W
X

> b}). Moreover, since f is continuous at b and f ′ has

a finite right-hand limit f ′+(b) at b, one can continuously extend the derivative of F to the

set {(X,W ) ∈ R++ × R+ | W
X

= b}. This in turn ensures that one can apply the change

of variable formula for processes of locally bounded variation (Dellacherie and Meyer (1982,

Chapter VI, Section 92)) to the pair (X, W·−) = {(Xt,Wt−)}t≥0, yielding

e−rT F (XT+ ,WT ) = F (X0,W0−) +

∫ T

0

e−rt[(ρWt− + λHt)FW (Xt,Wt−)− rF (Xt,Wt−)] dt

+

∫ T

0

e−rtFX(Xt,Wt−) (dXd,c
t + gtXt dt)

(D.3)

−
∫ T

0

e−rtFW (Xt,Wt−) dLc
t

+
∑

t∈[0,T ]

e−rt[F (Xt+ ,Wt)− F (Xt, Wt−)]

for all T ∈ [0, τ), where Xd,c and Lc stand for the pure continuous parts of Xd and L. For

each t ∈ [0, T ], one has the following decomposition of the jump in F (Xt,Wt−) at time t:

F (Xt+ ,Wt)− F (Xt,Wt−) = F (Xt+ ,Wt)− F (Xt,Wt)

+ F (Xt,Wt− −Ht∆Nt −∆Lt)− F (Xt,Wt− −Ht∆Nt)

+ F (Xt,Wt− −Ht∆Nt)− F (Xt,Wt−),
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reflecting that Wt = Wt− −Ht∆Nt −∆Lt, where ∆Nt = Nt −Nt− and ∆Lt = Lt − Lt− for

all t ∈ [0, T ], with N0− = L0− = 0 by convention. Now fix T ∈ [0, τ) and, as in Appendix A,

let Mt = Nt − λt for all t ≥ 0. Using the above decomposition along with

∑

t∈[0,T ]

e−rt[F (Xt,Wt−−Ht∆Nt)−F (Xt,Wt−)] =

∫ T

0

e−rt[F (Xt,Wt−−Ht)−F (Xt,Wt−)] dNt,

one can then rewrite (D.3) as:

e−rT F (XT+ ,WT ) = F (X0,W0−) +

∫ T

0

e−rt[F (Xt,Wt− −Ht)− F (Xt,Wt−)] dMt

+ A1 + A2 + A3,

(D.4)

where A1 is a standard integral with respect to time,

A1 =

∫ T

0

e−rt{(ρWt− + λHt)FW (Xt,Wt−) − λ[F (Xt,Wt−)− F (Xt,Wt− −Ht)]

+ FX(Xt,Wt−)gtXt − rF (Xt,Wt−)} dt,

(D.5)

A2 accounts for downsizing, that is, negative changes in the size of the project,

A2 =

∫ T

0

e−rtFX(Xt,Wt−) dXd,c
t +

∑

t∈[0,T ]

e−rt[F (Xt+ ,Wt)− F (Xt,Wt)], (D.6)

and A3 accounts for changes in cumulative transfers,

A3 = −
∫ T

0

e−rtFW (Xt,Wt−) dLc
t

+
∑

t∈[0,T ]

e−rt[F (Xt,Wt− −Ht∆Nt −∆Lt)− F (Xt,Wt− −Ht∆Nt)].

(D.7)

One now treats each of these terms in turn.

Consider first A1. For each t ∈ [0, T ], let wt =
Wt−
Xt

and ht = Ht

Xt
. Since F is homogenous

of degree 1, one has FW (Xt,Wt−) = f ′+(wt) and FX(Xt,Wt−) = f(wt) − wtf
′
+(wt) for all

t ∈ [0, T ]. Thus

A1 =

∫ T

0

e−rtXt{[(ρ− gt)wt + λht]f
′
+(wt)− λ[f(wt)− f(wt − ht)]− (r − gt)f(wt)} dt

≤
∫ T

0

e−rtXt{[(ρ− gt)wt + λb]f ′+(wt)− λ[f(wt)− f(wt − b)]− (r − gt)f(wt)} dt (D.8)
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≤
∫ T

0

e−rtXt(−µ + λC + gtc) dt

where the first and second inequalities respectively follow from the concavity of f and from

Lemma D.1.1, along with the fact that wt ≥ ht ≥ b for all t ∈ [0, T ] by limited liability and

incentive compatibility.

Consider next A2. Since F is homogenous of degree 1, one has

A2 =

∫ T

0

e−rt[f(wt) − wtf
′
+(wt)] dXd,c

t

+
∑

t∈[0,T ]

e−rtWt

[
Xt+

Wt

f

(
Wt

Xt+

)
− Xt

Wt

f

(
Wt

Xt

)]
≤ 0,

(D.9)

where the inequality can be justified as follows. Since f is concave and vanishes at 0,

f(w)− wf ′+(w) ≥ 0 for all w ≥ 0. Because the process Xd,c is decreasing, this implies that

the first term on the right-hand side of (D.9) is negative. The properties of f stated above

also imply that f(w)
w

is a decreasing function of w. Since Wt

Xt+
≥ Wt

Xt
for all t ∈ [0, T ], this

implies that the second term on the right-hand side of (D.9) is negative. As a result of this,

one has A2 ≤ 0.

Consider finally A3. Since F is homogenous of degree 1 and f is concave, one has

F (Xt,Wt− −Ht∆Nt −∆Lt) − F (Xt,Wt− −Ht∆Nt)

= Xt

[
f

(
Wt− −Ht∆Nt −∆Lt

Xt

)
− f

(
Wt− −Ht∆Nt

Xt

)]

= −f ′+

(
Wt− −Ht∆Nt

Xt

)
∆Lt

≤ ∆Lt,

for all t ∈ [0, T ], where the last inequality reflects that f ′+ ≥ −1. Using again the fact that

−FW (Xt,Wt−) = −f ′+(wt) ≤ 1 for all t ∈ [0, T ] along with the definition of A3, one therefore

obtains that

A3 ≤
∫ T

0

e−rt dLc
t +

∑

t∈[0,T ]

e−rt∆Lt =

∫ T

0

e−rt dLt. (D.10)

Substituting the upper bounds (D.8), (D.9) and (D.10) for A1, A2 and A3 into (D.4) and

rearranging then yields
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F (X0,W0−) ≥ e−rT F (XT+ ,WT ) +

∫ T

0

e−rt{Xt[(µ− gtc)dt− CdNt]− dLt}+ M̃T (D.11)

for all T ∈ [0, τ), where the process M̃ = {M̃t}t≥0 is defined by

M̃t =

∫ t∧τ

0

e−rs[F (Xs,Ws−)− F (Xs,Ws− −Hs) + XsC] dMs∧τ (D.12)

for all t ≥ 0. For each t ≥ 0,

E

[∫ t∧τ

0

e−rs|F (Xs,Ws−)− F (Xs,Ws− −Hs) + XsC| ds

]

= E

[∫ t∧τ

0

e−rsXs

∣∣∣∣f
(

Ws−

Xs

)
− f

(
Ws− −Hs

Xs

)
+ C

∣∣∣∣ ds

]

≤ E

[ ∫ t∧τ

0

e−rs

(
Ws− sup

w∈(b,wp]

{|f ′(w)|}+ XsC

)
ds

]

≤ E

[ ∫ t∧τ

0

e−rs

(
W0−e(ρ+λ)s sup

w∈(b,wp]

{|f ′(w)|}+ X0e
γsC

)
ds

]

< ∞,

where the first inequality follows from the limited liability constraint (16) and the second

inequality is an immediate consequence of (13) and of the fact that X grows at most at rate

γ. Since the integrand in (D.12) is FN
·∧τ–predictable, where by definition FN

·∧τ = {FN
t∧τ}t≥0, a

straightforward adaptation of Brémaud (1981, Chapter II, Lemma L3) shows that M̃ is an

FN
·∧τ–martingale under P. In particular, E [M̃T ] = M̃0 = 0. Taking expectations in (D.11)

then leads to

F (X0,W0−)

≥ E

[
e−rT∧τF (XT∧τ+ , WT∧τ ) +

∫ T∧τ

0

e−rt{Xt[(µ− gtc)dt− CdNt]− dLt}
]

= E

[∫ τ

0

e−rt{Xt[(µ− gtc)dt− CdNt]− dLt}
]

−E

[
1{T<τ}

(∫ τ

T

e−rt{Xt[(µ− gtc)dt− CdNt]− dLt} − e−rT F (XT+ ,WT )

)]
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= E

[∫ τ

0

e−rt{Xt[(µ− gtc)dt− CdNt]− dLt}
]

(D.13)

− e−rT E

[
1{T<τ}

(
E

[∫ τ

T

e−r(t−T ){Xt[(µ− gtc)dt− CdNt]− dLt}|FN
T

]
− F (XT+ ,WT )

)]

≥ E

[∫ τ

0

e−rt{Xt[(µ− gtc)dt− CdNt]− dLt}
]

− e−rT E

[
1{T<τ}

[
XT (µ− λC)

r − γ
−WT − F (XT+ ,WT )

]]

for all T ≥ 0, where the first equality reflects that Wτ = 0 by (9), while the second inequality

follows from the fact that X grows at most at rate γ < r and from the definition (9) of WT ,

bearing in mind that ρ > r. Now, for each T ≥ 0,

e−rT

∣∣∣∣
XT (µ− λC)

r − γ
−WT − F (XT+ ,WT )

∣∣∣∣ = e−rT

∣∣∣∣
XT (µ− λC)

r − γ
−XT+v

(
WT

XT+

)∣∣∣∣

≤ e−(r−γ)T X0

[
µ− λC

r − γ
+ v(wp)

]
.

Since r > γ, taking limits as T goes to ∞ in (D.13) yields (D.2). Hence the result. ¥

D.2 Attaining the Upper Bound: The Optimal Contract

We now show that the upper bound (D.2) for the principal’s expected payoff derived in

Proposition D.1.1 can actually be attained by an incentive compatible contract, which is

therefore optimal in the class of contracts that induce maximal risk prevention. We assume

as in Proposition D.1.1 that conditions (C.4) and (C.20) hold.

Proof of Proposition 3. Since Λt = λ for all t ≥ 0 under maximal risk prevention, one

has PΛ = P, see Appendix A. It follows from (42) and (43) that wt > b for all t ≥ 0. This

ensures that the size process X = {Xt}t≥0 defined by (44) always remains strictly positive.

The proof then consists of four steps.

Step 1 One first justifies equation (44) for X. The proposed downsizing policy stipulates

that the project be downsized by a factor wt−b
b
∧ 1 at any time t at which the process N

jumps. Hence the cumulative downsizing process Xd satisfies

Xd
t =

∫ t−

0

Xs

(
ws − b

b
∧ 1− 1

)
dNs
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for all t ≥ 0. Next, the proposed investment policy stipulates that the size of the project

grow at rate γ as long as wt > wi and at rate 0 otherwise. Hence the cumulative investment

process X i satisfies

X i
t =

∫ t

0

Xsγ1{ws>wi} ds

for all t ≥ 0. As X = X0 + Xd + X i, X solves the stochastic differential equation

Xt = X0 +

∫ t−

0

Xs

[(
ws − b

b
∧ 1− 1

)
dNs + γ1{ws>wi} ds

]
(D.14)

for all t ≥ 0. Since X has left-continuous paths, it follows from the exponential formula for

Lebesgue–Stieltjes calculus (Brémaud (1981, Appendix A4, Theorem T4)) that

Xt = X0

∏

s∈(0,t)

[
1 +

(
ws − b

b
∧ 1− 1

)
∆Ns

]
exp

(∫ t

0

γ1{ws>wi} ds

)

for all t ≥ 0, where ∆Ns = Ns − Ns− for all s ∈ [0, t], with N0− = 0 and
∏
∅ = 1 by

convention. This in turn yields (44) by definition of the stopping times (Tk)k≥1.

Step 2 One now shows that

Xtwt = X0w0 +

∫ t−

0

{Xs[(ρws + λb) ds− b dNs]− dLs} (D.15)

for all t ≥ 0. Adapting the integration by parts formula for functions of locally bounded

variation (Dellacherie and Meyer (1982, Chapter VI, Theorem 90)) to the case of the product

of two processes with left-continuous paths, one obtains that

Xtwt = X0w0 +

∫ t−

0

Xs dws +

∫ t−

0

ws dXs +
∑

s∈[0,t)

∆Xs∆ws (D.16)

for all t ≥ 0, where ∆Xs = Xs+ −Xs and ∆ws = ws+ −ws for all s ∈ [0, t), with
∑

∅ = 0 by

convention. Substituting (D.14) and (42) into (D.16) and using (45) yields

Xtwt = X0w0 +

∫ t−

0

[Xs(ρws + λb) ds− dLs] +

∫ t−

0

Xs

[
(ws − b)

(
ws − b

b
∧ 1

)
− ws

]
dNs

+
∑

s∈[0,t)

Xsb

(
ws − b

b
∧ 1

)(
ws − b

b
∧ 1− 1

)
(∆Ns)

2,

from which (D.15) follows after a straightforward computation.
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Step 3 One then shows that, for each t ≥ 0, the proposed contract delivers the agent a

continuation payoff Wt = lims↓t Xsws after the realization of uncertainty at time t. From

Step 2 one has

Wt = W0− +

∫ t

0

[(ρWs + Xsλb) ds−Xsb dNs − dLs]

for all t ≥ 0. Applying the change of variable formula for processes of locally bounded

variation (Dellacherie and Meyer (1982, Chapter VI, Section 92)) to W = {Wt}t≥0 yields,

after simplifications,

e−ρT WT = e−ρtWt −
∫ T

t

e−ρs(Xsb dMs + dLs)

for all T ≥ t, where M is defined as in Appendix A. Since X is FN–predictable and grows

at most at rate γ < ρ, it then follows from Brémaud (1981, Chapter II, Lemma L3) that

Wt = E [e−ρ(T−t)WT |FN
t ] + E

[∫ T

t

e−ρ(s−t) dLs |FN
t

]
(D.17)

for all T ≥ t. Now, observe from (42) and (43) that wt ∈ (b, wp] for all t ≥ 0, so that

0 < e−ρ(T−t)WT ≤ eρte−(ρ−γ)T wp (D.18)

for all T ≥ t. Besides, an immediate consequence of (43) and (45) is that

∫ T

t

e−ρ(s−t) dLs =

∫ T

t

e−ρ(s−t)Xs[(ρ− γ)wp + λb]1{ws+=wp} ds

≤ Xt[(ρ− γ)wp + λb]

ρ− γ
.

(D.19)

for all T ≥ t. Note that both (D.18) and (D.19) reflect the fact that X grows at most at rate

γ < ρ. Since L is increasing, the family of functions {∫ T

t
e−ρ(s−t) dLs}T≥t is increasing and

by (D.19) it is uniformly bounded. Hence, by the monotone convergence theorem, taking

limits as T goes to ∞ in (D.17) yields

Wt = E

[∫ ∞

t

e−ρ(s−t) dLs |FN
t

]
,

from which the claim follows.

Step 4 From Step 3, the proposed contract generates a continuation utility process that
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satisfies (13) with Λt = λ and Ht = Xtb for all t ≥ 0. Thus, by Proposition 1, this contract

induces maximal risk prevention. It remains to show that it is optimal in the class of

contracts that induce maximal risk prevention and yield the agent an initial expected payoff

W0− given an initial project size X0. By Proposition D.1.1, one only needs to show that

this contract yields the principal an initial expected payoff F (X0,W0−). Fix some T > 0.

Proceeding as for the derivation of (D.4), one obtains that

e−rT F (XT+ , WT ) = F (X0,W0−) +

∫ T

0

e−rt[F (Xt,Wt− −Xtb)− F (Xt,Wt−)] dMt

+ A1 + A2 + A3,

(D.20)

where A1, A2 and A3 are defined as in (D.5), (D.6) and (D.7), with gt = γ1{wt>wi} and

Ht = Xtb for all t ≥ 0. One now treats each of these terms in turn.

Consider first A1. By (D.8) one has

A1 =

∫ T

0

e−rtXt{[(ρ− γ1{wt>wi})wt + λb)f ′(wt)

−λ[f(wt)− f(wt − b)]− (r − γ1{wt>wi})f(wt)} dt

=

∫ T

0

e−rtXt(−µ + λC + gtc) dt,

(D.21)

where the second equality follows from (41) and from the fact that gt = γ1{wt>wi} and

wt ∈ (b, wp] for all t ∈ [0, T ].

Consider next A2. Since the process Xd is purely discontinuous,

A2 =
∑

t∈[0,T ]

e−rt[F (Xt+ ,Wt)− F (Xt,Wt)]

=
∑

t∈[0,T ]

e−rt

[
Xt+f

(
Wt

Xt+

)
−Xtf

(
Wt

Xt

)]

=
∑

t∈[0,T ]

e−rtXt

[
wt − b

b
f(b)− f(wt − b)

]
1{∆Xt<0}

= 0,

(D.22)

where the second equality follows from the homogeneity of degree 1 of F , the third from the

fact that Xt+ = wt−b
b

Xt and Wt = Wt− − Xtb = Xt(wt − b) whenever ∆Xt < 0, and the

fourth from the linearity of f over [0, b] along with the fact that ∆Xt < 0 implies wt− b < b.
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Consider finally A3. Since the process L is continuous except perhaps at time 0,

A3 = −
∫ T

0

e−rtFW (Xt,Wt−) dLc
t + F (X0,W0− − L0)− F (X0,W0−)

= −
∫ T

0

e−rtf ′(wt)Xt[(ρ− γ)wp + λb]1{wt+=wp} dt + (W0− −X0w
p) ∨ 0 (D.23)

=

∫ T

0

e−rt dLt,

where the second equality follows from the homogeneity of degree 1 of F together with (43)

and (45), and the third from (45) along with the fact that wt+ = wp implies wt = wp and

thus f ′(wt) = −1.

The end of the proof proceeds along the lines of that of Proposition D.1.1. First, taking

expectations in (D.20) and using (D.21), (D.22) and (D.23) leads to

F (X0,W0−) = E

[
e−rT F (XT+ ,WT ) +

∫ T

0

e−rt{Xt[(µ− gtc)dt− CdNt]− dLt}
]

(D.24)

for all T ≥ 0. By construction, Wt

Xt+
= lims↓t ws ∈ [b, wp] for all t ≥ 0. Thus, for each T ≥ 0,

∣∣e−rT F (XT+ ,WT )
∣∣ =

∣∣∣∣e−rT XT+f

(
WT

XT+

)∣∣∣∣ ≤ e−(r−γ)T X0 max
w∈[b,wp]

{|f(w)|},

reflecting that X grows at most at rate γ < r. Then, as in Step 3, one can take limits as T

goes to ∞ in (D.24), which yields

E

[∫ ∞

0

e−rt{Xt[(µ− gtc)dt− CdNt]− dLt}
]
= F (X0,W0−),

and the result follows. ¥

Remark An implication of our analysis is that, given (C.4), (C.20) is a sufficient condition

for the optimal contract to entail investment. One can actually show that (C.20) is also

necessary for investment to ever be strictly profitable. Indeed, suppose that (C.20) fails to

hold and define an alternative value function for the principal by

fβ0(w) = vβ0(w) ∧ vβ0(w
p
β0

)− w

for all w ≥ 0. Observe that since vβ0 is concave over [0, wp
β0

] and v′β0
= 0 over [wp

β0
,∞), fβ0

is concave over R+ and f ′β0
= −1 over [wp

β0
,∞). Hence
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fβ0(w)− wf ′β0+(w) ≤ fβ0(w
p
β0

)− wp
β0

f ′β0
(wp

β0
) = vβ0(w

p
β0

) ≤ c (D.25)

for all w ≥ 0. Now, proceeding as in the proof of Lemma D.1.1, it is easy to check that

(ρw + λb)f ′β0+
(w)− λ[fβ0(w)− fβ0(w − b)]− rfβ0(w) ≤ −µ + λC (D.26)

for all w ≥ b. From (D.25) and (D.26), one obtains that whenever 0 ≤ g ≤ γ and w ≥ b,

[(ρ− g)w + λb]f ′β0+(w)− λ[fβ0(w)− fβ0(w − b)]− (r − g)fβ0(w) ≤ −µ + λC + gc, (D.27)

in analogy with (D.1). Arguing as in the proof of Proposition D.1.1, the inequality (D.27) can

then be used to show that any contract that induces maximal risk prevention and yields the

agent an initial expected payoff W0− given an initial project size X0 yields the principal an

initial expected payoff at most equal to Fβ0(X0, W0−) = X0fβ0

(W0−
X0

)
. Finally, an incentive

compatible contract that attains this upper bound can easily be constructed along the lines

of Proposition 3, replacing wp by wp
β0

throughout and requiring that no investment ever take

place, gt = 0 for all t ≥ 0.

D.3 Initialization

Proposition 3 describes the optimal contract for a given initial project size X0 and a given

initial promised utility W0− for the agent. In this section, we briefly examine how X0 and W0−

are optimally determined at time 0. Consider for simplicity the case in which the principal is

competitive. We then look for a pair (X0,W0−) that maximizes utilitarian welfare under the

constraint that the principal breaks even on average. Letting w0 =
W0−
X0

, the corresponding

maximization problem is

max
(X0,w0)

{X0[f(w0) + w0]}, (D.28)

subject to the principal’s participation constraint

X0f(w0) ≥ 0, (D.29)

the agent’s limited liability contraint

w0 ≥ 0, (D.30)

and the feasibility constraint
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1 ≥ X0, (D.31)

reflecting that the initial size of the project is at most 1. Let η be the Lagrange multiplier

for constraint (D.29), and focus on the interesting case where (1 + η)f(w0) + w0 > 0 at the

optimum.2 It immediately follows that it is optimal to start operating the project at full

scale, X0 = 1. This result hinges on the homogeneity of the principal’s value function F . As

shown in (D.28), this enables one to separate at time 0 the determination of the project’s

size from that of the manager’s size-adjusted utility. The initial size-adjusted utility of the

agent is given by the first-order condition f ′(w0) = − 1
1+η

. Two cases arise, depending on

whether constraint (D.29) is slack or binding at the optimum. If f(wp) ≥ 0, this constraint

is slack, so that η = 0 and w0 = wp, which from the point of view of utilitarian welfare is

optimal. If f(wp) < 0, this constraint is binding, so that η > 0 and w0 < wp, reflecting that

an initial size-adjusted utility for the agent equal to wp is inconsistent with the participation

constraint of the principal.

E Firm Size Dynamics

Proof of Proposition 4. One will repeatedly use the following simple technical fact.

Fact 2 Let (Yn)n≥1 be a sequence of real valued random variables that converges P–almost

surely to a constant y, and let (nt)t≥0 be a family of integer valued random variables that

diverges P–almost surely to ∞ as t goes to ∞. Then the family (Ynt)t≥0 converges P–almost

surely to y as t goes to ∞.

Proof. Since (Yn)n≥1 converges P–almost surely to y, there exists a measurable set Ω0

with P [Ω0] = 1 such that for each ω ∈ Ω0 and ε > 0, there exists m0(ω, ε) ≥ 1 such that

|Yn(ω)− y| ≤ ε for all n ≥ m0(ω, ε). Next, since (nt)t≥0 diverges P–almost surely to ∞ as t

goes to ∞, there exists a measurable set Ω1 with P [Ω1] = 1 such that for each ω ∈ Ω1 and

m0 ≥ 1, there exists t0(ω,m0) ≥ 0 such that nt(ω) ≥ m0 for all t ≥ t0(ω,m0). Hence, for

each ω ∈ Ω0 ∩ Ω1 and ε > 0, one has nt(ω) ≥ m0(ω, ε) and thus |Ynt(ω)(ω) − y| ≤ ε for all

t ≥ t0(ω,m0(ω, ε)). This implies the result as P [Ω0 ∩ Ω1] = 1. ¥

Now, from (47), one has

ln(Xt)

t
=

1

t

[ Nt−∑

k=1

ln

(
wTk

− b

b
∧ 1

)
+

∫ TN
t−

0

γ1{ws>wi} ds +

∫ t

TN
t−

γ1{ws>wi} ds

]
(E.1)

2This is the case whenever f takes strictly positive values. Otherwise the solution to problem (D.28) to
(D.31) is X0 = w0 = 0 and the project is not operated.
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for all t ≥ 0. One now treats each of the terms on the right-hand side of (E.1) in turn.

Claim 1 Let µw be the unique invariant measure associated to the process {wTk
}k≥1. Then

lim
t→∞

1

t

Nt−∑

k=1

ln

(
wTk

− b

b
∧ 1

)
= λ

∫

[b,2b)

ln

(
w − b

b

)
µw(dw),

P–almost surely.

Proof. The proof goes through a sequence of steps.

Step 1 A straightforward implication of (42) is that {wTk
}k≥1 is a Markov process. Let

P : [b, wp] × B([b, wp]) → [0, 1] denote the associated transition function, where B([b, wp])

is the Borel σ–field over [b, wp]. Let A ∈ B([b, wp]) be Markov invariant for {wTk
}k≥1, that

is P (w, A) = 1 for all w ∈ A. Then a further implication of (42) is that for all w ∈ A,

A must contain a subset of full Lebesgue measure in [(w − b) ∨ b, wp]. Hence there are

no disjoint Markov invariant sets, and {wTk
}k≥1 is Markov ergodic (Stout (1974, Definition

3.6.8)). One now shows that {wTk
}k≥1 has a stationary initial distribution. Define tb,wp to

be the minimum amount of time it takes for the process {wt}t≥0 to transit from b to wp,

that is, from (42):

tb,wp =
1

ρ
ln

(
ρwi + λb

ρb + λb

)
+

1

ρ− γ
ln

(
(ρ− γ)wp + λb

(ρ− γ)wi + λb

)
. (E.2)

Then clearly P (w, {wp}) ≥ e−λtb,wp for all w ∈ [b, wp]. Hence the transition function P

satisfies Condition M in Stokey and Lucas (1989, Chapter 11, Section 4). Specifically, for

each A ∈ B([b, wp]) the following holds. Either wp ∈ A and P (w,A) ≥ e−λtb,wp for all

w ∈ [b, wp], or wp 6∈ A and P (w, [b, wp]\A) ≥ e−λtb,wp for all w ∈ [b, wp]. Let ∆([b, wp]) be

the space of Borel probability measures over [b, wp], and let T ∗ : ∆([b, wp]) → ∆([b, wp]) be

the adjoint operator associated with P , defined by

(T ∗µ)(A) =

∫

[b,wp]

P (w,A) µ(dw)

for all (µ, A) ∈ ∆([b, wp]) × B([b, wp]). Condition M as stated above implies that T ∗ is a

contraction of modulus 1−e−λtb,wp over the space ∆([b, wp]) endowed with the total variation

norm ‖ · ‖TV (Stokey and Lucas (1989, Lemma 11.11)). Because this is a complete metric

space, it follows from the contraction mapping theorem that T ∗ has an unique invariant

measure µw, which corresponds to the unique stationary initial distribution of {wTk
}k≥1.
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Step 2 One next shows that

∫

[b,wp]

∣∣∣∣ln
(

w − b

b
∧ 1

)∣∣∣∣µw(dw) < ∞. (E.3)

To do so, define an auxiliary process {ŵt}t≥0 by

ŵt = [1 + (ρ− γ + λ)(t− TNt− )]b ∧ 2b

for all t ≥ 0. It is easy to check from (42) that ŵt ≤ wt for all t ≥ 0. Now, for each k ≥ 1,

ŵTk
= [1 + (ρ− γ + λ)(Tk − Tk−1)]b ∧ 2b,

where T0 = 0 by convention. Thus, by the properties of the Poisson process, (ŵTk
)k≥1 is a

sequence of independently and identically distributed random variables, with

P [ŵTk
≤ w] = 1− e−

λ(w−b)
(ρ−γ+λ)b if w ∈ [b, 2b),

P [ŵTk
= 2b] = e−

λ
ρ−γ+λ

(E.4)

for all k ≥ 1. Denote by µŵ the corresponding measure over [b, 2b]. For each j ≥ 1 and

w ∈ [b, wp], define gj(w) = ln
(

w−b
b
∧ 1

) ∨ (−j), and observe that −j ≤ gj ≤ 0 over [b, wp]

and gj = 0 over [2b, wp]. Since ŵTk
≤ wTk

for all k ≥ 1,

1

n

n∑

k=1

gj(ŵTk
) ≤ 1

n

n∑

k=1

gj(wTk
) (E.5)

for all n ≥ 1, P–almost surely. Since the random variables (ŵTk
)k≥1 are independently and

identically distributed over [b, 2b] according to µŵ, and since the function gj is measurable

and bounded, and hence µŵ–integrable, it follows from the strong law of large numbers that

the sequence
(

1
n

∑n
k=1 gj(ŵTk

)
)

n≥1
converges P–almost surely to

∫

[b,2b]

gj(w) µŵ(dw) =

∫ 2b

b

gj(w)
λ

(ρ− γ + λ)b
e−

λ(x−b)
(ρ−γ+λ)b dw,

where the equality follows from (E.4) and from the fact that gj(2b) = 0. Similarly, since the

process {wTk
}k≥1 is Markov ergodic by Step 1, with invariant measure µw over [b, wp], and

since the function gj is measurable and bounded, and hence µw–integrable, it follows from

the strong law of large numbers for Markov ergodic processes (Stout (1974, Theorem 3.6.7))
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that the sequence
(

1
n

∑n
k=1 gj(wTk

)
)

n≥1
converges P–almost surely to

∫

[b,wp]

gj(w) µw(dw).

Combining these observations with (E.5), and using the fact that gj ≤ 0, one obtains that

∫

[b,wp]

|gj(w)|µw(dw) ≤
∫ 2b

b

|gj(w)| λ

(ρ− γ + λ)b
e−

λ(w−b)
(ρ−γ+λ)b dw. (E.6)

By construction, the sequence of functions (|gj|)j≥1 is increasing and converges pointwise to

the function |g∞| : [b, wp] → R ∪ {∞} defined by g∞(w) = ln
(

w−b
b
∧ 1

) ∈ R ∪ {−∞} for all

w ∈ [b, wp]. Applying the monotone convergence theorem to both sides of (E.6) and using

the fact that g∞(w) = ln
(

w−b
b

)
if w ∈ [b, 2b] then yields

∫

[b,wp]

∣∣∣∣ln
(

w − b

b
∧ 1

)∣∣∣∣µw(dw) ≤
∫ 2b

b

∣∣∣∣ln
(

w − b

b

)∣∣∣∣
λ

(ρ− γ + λ)b
e−

λ(w−b)
(ρ−γ+λ)b dw

<
λ

ρ− γ + λ

∫ 1

0

| ln(x)| dx (E.7)

=
λ

ρ− γ + λ
,

from which (E.3) follows.

Step 3 Since the process {wTk
}k≥1 is Markov ergodic by Step 1, with invariant measure µw

over [b, wp], and since the function g∞ is µw–integrable by Step 2, it follows from the strong

law of large numbers for Markov ergodic processes (Stout (1974, Theorem 3.6.7)) that the

sequence
(

1
n

∑n
k=1 g∞(wTk

)
)

n≥1
=

(
1
n

∑n
k=1 ln

(wTk
−b

b
∧ 1

))
n≥1

converges P–almost surely to

∫

[b,wp]

g∞(w) µw(dw) =

∫

[b,wp]

ln

(
w − b

b
∧ 1

)
µw(dw) =

∫

[b,2b)

ln

(
w − b

b

)
µw(dw),

where the second equality follows from the fact that g∞ = 0 over [2b, wp]. Applying Fact 2

to the sequence (Yn)n≥1 =
(

1
n

∑n
k=1 ln

(wTk
−b

b
∧ 1

))
n≥1

and to the family (nt)t≥0 = (Nt−)t≥0,

and using the fact that
Nt−

t
converges P–almost surely to λ as t goes to ∞ by the strong

law of large numbers for the Poisson process, one then obtains that 1
t

∑Nt−
k=1 ln

(wTk
−b

b
∧ 1

)

converges P–almost surely to λ
∫
[b,2b)

ln
(

w−b
b

)
µw(dw) as t goes to ∞. ¥

Claim 2 Let µw+ be the unique invariant measure associated to the process {wT+
k
}k≥1, and
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let λ be the exponential distribution with parameter λ. Then

lim
t→∞

1

t

∫ TN
t−

0

1{ws>wi} ds = 1− λ

∫

[b,wi)×R+

{[
1

ρ
ln

(
ρwi + λb

ρw + λb

)]
∧ s

}
µw+⊗λ(dw, ds),

P–almost surely.

Proof. The proof goes through a sequence of steps.

Step 1 For each w ∈ [b, wi), define tw,wi to be the minimum amount of time it takes for

the process {wt}t≥0 to transit from w to wi, that is, from (42):

tw,wi =
1

ρ
ln

(
ρwi + λb

ρw + λb

)
. (E.8)

For each k ≥ 1, consider the integral Ik =
∫ Tk

Tk−1
1{ws>wi} ds, where T0 = 0 by convention.

According to (42), two cases must be distinguished. Suppose first that wT+
k−1

≥ wi. Then

ws > wi for all s ∈ (Tk−1, Tk], and therefore Ik = Tk − Tk−1. Suppose next that wT+
k−1

< wi.

If Tk − Tk−1 ≤ tw
T+

k−1
,wi , then ws ≤ wi for all s ∈ (Tk−1, Tk], and therefore Ik = 0. Finally,

if Tk − Tk−1 > tw
T+

k−1
,wi , then ws > wi for all s ∈ (Tk−1 + tw

T+
k−1

,wi , Tk], and therefore

Ik = Tk − Tk−1 − tw
T+

k−1
,wi . Summing over k = 1, . . . , n and rearranging, one obtains that

1

n

∫ Tn

0

1{ws>wi} ds =
1

n

n∑

k=1

(Tk − Tk−1)− 1

n

n∑

k=1

[
tw

T+
k−1

,wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi} (E.9)

for all n ≥ 1.

Step 2 Observe from (42) that the process {Zk}k≥1 = {(wT+
k−1

, Tk − Tk−1)}k≥1 is Markov.

Let Q : [b, wp] × R+ × B([b, wp] × R+) → [0, 1] denote the associated transition function,

where B([b, wp] × R+) is the Borel σ–field over [b, wp] × R+. From (42) again, one has

Zk+1 = (h(Zk), Tk+1 − Tk) for all k ≥ 1, where the function h : [b, wp]× R+ → [b, wp − b] is

defined by

h(w, t) =





[(
w + λb

ρ

)
eρt − λb

ρ
− b

] ∨ b if w ∈ [b, wi) and t ≤ tw,wi ,

{[(
wi + λb

ρ−γ

)
e(ρ−γ)(t−tw,wi ) − λb

ρ−γ

] ∧ wp − b
} ∨ b if w ∈ [b, wi) and t > tw,wi ,

{[(
w + λb

ρ−γ

)
e(ρ−γ)t − λb

ρ−γ

] ∧ wp − b
} ∨ b if w ∈ [wi, wp] and t ≥ 0,

with tw,wi as defined in (E.8). Since Zk and Tk+1 − Tk are independent and Tk+1 − Tk

has distribution λ for all k ≥ 1, this in turn implies that Q((w, t), A) = λ(Ah(w,t)) for all
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(w, t, A) ∈ [b, wp] × R+ × B([b, wp] × R+), where Aw′ = {t′ ∈ R+ | (w′, t′) ∈ A} is the

w′–section of A for all w′ ∈ [b, wp]. Now, let A ∈ B([b, wp] × R+) be Markov invariant for

{Zk}k≥1, that is Q((w, t), A) = 1 for all (w, t) ∈ A. Then λ(Ah(w,t)) = 1. Moreover, since

(h(w, t), t′) ∈ A if t′ ∈ Ah(w,t), one has Q((h(w, t), t′), A) = 1 and thus λ(Ah(h(w,t),t′)) = 1

for all t′ ∈ Ah(w,t). For each (w, t) ∈ A, consider the set h(h(w, t), Ah(w,t)). It follows from

the definition of h that h(h(w, t), Ah(w,t)) ⊂ [[h(w, t) − b] ∨ b, wp − b]. One now shows that

h(h(w, t), Ah(w,t)) has full Lebesgue measure in [[h(w, t) − b] ∨ b, wp − b]. Observe first that

the mapping h(h(w, t), ·) is increasing over R+, with h(h(w, t), 0) = [h(w, t) − b] ∨ b and

h(h(w, t), t′) = wp − b for t′ ≥ tb,wp , with tb,wp as defined in (E.2). Thus one only needs to

check that h(h(w, t),R+\Ah(w,t)) has Lebesgue measure 0. This follows from the fact that

R+\Ah(w,t) has λ–measure 0, and thus has Lebesgue measure 0 since these two measures

are mutually absolutely continuous, along with the fact that h(h(w, t), ·) is increasing and

absolutely continuous over any interval of the form [0, n], n ≥ 1, and thus maps sets of

Lebesgue measure 0 onto sets of Lebesgue measure 0 (Rudin (1986, Theorem 7.18)). Since

h(h(w, t), Ah(w,t)) has full Lebesgue measure in [[h(w, t) − b] ∨ b, wp − b] for any Markov

invariant set A and all (w, t) ∈ A, one has

h(h(w1, t1), A1,h(w1,t1)) ∩ h(h(w2, t2), A2,h(w2,t2)) 6= ∅

for any Markov invariant sets A1 and A2 and for all (w1, t1) ∈ A1 and (w2, t2) ∈ A2. As

λ(A1,w′′) = λ(A2,w′′) = 1 for all w′′ ∈ h(h(w1, t1), A1,h(w1,t1)) ∩ h(h(w2, t2), A2,h(w2,t2)), one

gets that A1,w′′ ∩A2,w′′ 6= ∅ for any such w′′, so that A1∩A2 6= ∅. Hence there are no disjoint

Markov invariant sets, and {Zk}k≥1 is Markov ergodic (Stout (1974, Definition 3.6.8)). To

complete this step of the proof, one shows that {Zk}k≥1 has a stationary initial distribution.

Proceeding as in Step 1 of the proof of Claim 1, it is easy to check that the process {wT+
k
}k≥1

has a unique stationary initial distribution. That is, letting P+ : [b, wp]× B([b, wp]) → [0, 1]

denote the associated transition function, there exists a unique probability measure µw+

over [b, wp] such that, for each A ∈ B([b, wp]),

µw+(A) =

∫

[b,wp]

P+(w, A) µw+(dw). (E.10)

Since Zk = (wT+
k−1

, Tk − Tk−1) for all k ≥ 1, and since wT+
k−1

and Tk − Tk−1 are independent

for all k ≥ 1, a natural guess for the invariant measure associated to {Zk}k≥1 is the product

measure µw+⊗λ. To verify this, let E1 × E2 be a measurable rectangle in B([b, wp]× R+).

Then, for each k ≥ 1, one has
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∫

[b,wp]×R+

Q((w, t), E1 × E2) µw+⊗λ(dw, dt)

=

∫

[b,wp]×R+

1{h(w,t)∈E1}λ(E2) µw+⊗λ(dw, dt)

= λ(E2)

∫

[b,wp]

µw+(dw)

∫

R+

1{h(w,t)∈E1} λ(dt)

= λ(E2)

∫

[b,wp]

P[h(w, Tk − Tk−1) ∈ E1] µ
w+(dw)

= λ(E2)

∫

[b,wp]

P
[
wT+

k
∈ E1 |wT+

k−1
= w

]
µw+(dw)

= λ(E2)

∫

[b,wp]

P+(w, E1) µw+(dw)

= λ(E2)µ
w+(E1)

= µw+⊗λ(E1 × E2),

where the first equality follows from the definition of the transition function Q, the second

from Tonelli’s theorem, the third from the fact that Tk−Tk−1 has distribution λ, the fourth

from the independence of wT+
k−1

and Tk − Tk−1, the fifth from the definition of the transition

function P+, the sixth from (E.10), and the last from the definition of the product measure

µw+⊗λ. A standard monotone class argument then implies that

µw+⊗λ(A) =

∫

[b,wp]×R+

Q((w, t), A) µw+⊗λ(dw, dt)

for all A ∈ B([b, wp]× R+), so that µw+⊗λ is an invariant measure associated to {Zk}k≥1.

Since {Zk}k≥1 is Markov ergodic, this invariant measure is in fact unique (Stout (1974,

Theorem 3.6.7)).

Step 3 One finally uses (E.9) to evaluate the limit of the sequence
(

1
n

∫ Tn

0
1{ws>wi} ds

)
n≥1

.

Since the random variables (Tk − Tk−1)k≥1 are independently and identically distributed

according to the exponential distribution λ with parameter λ, it follows from the strong law

of large numbers that the sequence
(

1
n

∑n
k=1(Tk−Tk−1)

)
n≥1

converges P–almost surely to 1
λ
.

Next, since the process {(wT+
k−1

, Tk − Tk−1)}k≥1 is Markov ergodic by Step 2, with invariant
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measure µw+⊗ λ over [b, wp] × R+, and since the mapping (w, s) 7→ (tw,wi ∧ s)1{w<wi} is

measurable, positive and bounded above by (w, s) 7→ s, and hence µw+⊗λ–integrable, it

follows from the strong law of large numbers for Markov ergodic processes (Stout (1974,

Theorem 3.6.7)) that the sequence
(

1
n

∑n
k=1

[
tw

T+
k−1

,wi ∧ (Tk−Tk−1)
]
1{w

T+
k−1

<wi}
)

n≥1
converges

P–almost surely to

∫

[b,wp]×R+

(tw,wi ∧ s)1{w<wi} µw+⊗λ(dw, dt)

=

∫

[b,wi)×R+

(tw,wi ∧ s) µw+⊗λ(dw, dt)

=

∫

[b,wi)×R+

{[
1

ρ
ln

(
ρwi + λb

ρw + λb

)]
∧ s

}
µw+⊗λ(dw, ds),

where the second equality follows from the definition (E.8) of tw,wi . Applying Fact 2 to

the sequence (Yn)n≥1 =
(

1
n

∫ Tn

0
1{ws>wi} ds

)
n≥1

and to the family (nt)t≥0 = (Nt−)t≥0, and

using the fact that
Nt−

t
converges P–almost surely to λ as t goes to ∞ by the strong law of

large numbers for the Poisson process, one then obtains that 1
t

∫ TN
t−

0 1{ws>wi} ds converges

P–almost surely to 1− λ
∫
[b,wi)×R+

{[
1
ρ

ln
(

ρwi+λb
ρw+λb

)]∧ s
}

µw+⊗λ(dw, ds) as t goes to ∞. ¥

Claim 3 One has

lim
t→∞

1

t

∫ t

TN
t−

1{ws>wi} ds = 0,

P–almost surely.

Proof. For each t ≥ 0,

0 ≤ 1

t

∫ t

TN
t−

1{ws>wi} ds ≤ 1− TNt−

t
=

Nt−

t

[
t

Nt−
− 1

Nt−

Nt−∑

k=1

(Tk − Tk−1)

]
. (E.11)

Applying Fact 2 to the sequence (Yn)n≥1 =
(

1
n

∑n
k=1(Tk − Tk−1)

)
n≥1

and to the family

(nt)t≥0 = (Nt−)t≥0, and using the fact that
Nt−

t
converges P–almost surely to λ as t goes to

∞ by the strong law of large numbers for the Poisson process, one then obtains from (E.11)

that 1
t

∫ t

TN
t−

1{ws>wi} ds converges P–almost surely to 0 as t goes to ∞. ¥

Given (E.1) and (E.8), combining Claims 1 to 3 completes the proof of Proposition 4. ¥

Remark The proofs of Claims 1 and 2 given above directly proceed by establishing that

the processes {wTk
}k≥1 and {(wT+

k−1
, Tk − Tk−1)}k≥1 are Markov ergodic, that is, that they
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have no disjoint invariant sets. Since the existence of an invariant measure can be proven in

each case by other means, this allows one to use the strong law of large numbers for Markov

ergodic processes (Stout (1974, Theorem 3.6.7)). A slightly different approach consists in

first showing that the transition functions associated to these processes satisfy Doeblin’s

condition (Doob (1953, Chapter V, Section 6)), which ensures the existence of invariant

measures. One then establishes that there exists a unique ergodic set and correspondingly

a unique invariant measure. Finally, one uses the strong law of large numbers for Markov

processes whose transition functions are known to satisfy Doeblin’s condition (Doob (1953,

Chapter V, Theorem 6.2)). That this is the case of the transition function P of {wTk
}k≥1 is

implicit in Step 1 of the proof of Claim 1, where it is shown that it satisfies Condition M in

Stokey and Lucas (1989, Chapter 11, Section 4). This condition is stronger than Doeblin’s

and implies at once that there exists a unique invariant measure. Consider now the process

{(wT+
k−1

, Tk − Tk−1)}k≥1 with transition Q over [b, wp]× R+. By definition, the transition Q

satisfies Doeblin’s condition if there exists a finite measure ϕ over B([b, wp]×R+), an integer

ν ≥ 1 and a number ε > 0 such that, for each (w, t, A) ∈ [b, wp] × R+ × B([b, wp] × R+),

Qν((w, t), A) ≤ 1 − ε whenever ϕ(A) ≤ ε. We now exhibit a triple (ϕ, ν, ε) such that this

condition holds. To do so, fix some ε ∈ (0, e−λtb,wp ), with tb,wp defined as in (E.2), and

consider the measure ϕ = e
−λtb,wp ε

e
−λtb,wp−ε

δwp−b ⊗ λ, where δwp−b is the Dirac mass at wp − b.

For each A ∈ B([b, wp] × R+), note that ϕ(A) = e
−λtb,wp ε

e
−λtb,wp−ε

λ(Awp−b), where Awp−b is the

(wp − b)–section of A. This implies in particular that λ(Awp−b) ≤ 1 − ε

e
−λtb,wp whenever

ϕ(A) ≤ ε, so that in this case

Q2((w, t), A) = 1−Q2((w, t), Ac)

≤ 1−Q2((w, t), {wp − b} × R+ ∩ Ac)

≤ 1− e−λtb,wp [1− λ(Awp−b)]

≤ 1− ε

for all (w, t) ∈ [b, wp]× R+, where the second inequality follows from the definitions of tb,wp

and Q. Thus Q satisfies Doeblin’s condition, as claimed. Moreover, observe that for each

(w, t, A) ∈ [b, wp]× R+ × B([b, wp]× R+),

Q2((w, t), A) ≥ e−λtb,wp λ(Awp− b) =

(
e−λtb,wp

ε
− 1

)
ϕ(A),

which, since e−λtb,wp > ε, implies that Q2((w, t), A) > 0 whenever ϕ(A) > 0. This in turn is
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a sufficient condition for Q to have a unique ergodic set (Stokey and Lucas (1989, Theorem

11.10)). One can then show as in Step 2 of the proof of Claim 2 that the corresponding

unique invariant measure is µw+⊗λ. Finally, Step 3 of the proof of Claim 2 follows from

applying the strong law of large numbers for Markov processes whose transition functions

satisfy Doeblin’s condition (Doob (1953, Chapter V, Theorem 6.2)).

Proof of Proposition 5. One first checks that (49) holds uniformly in γ whenever c is

close enough to 0. Specifically, using the notation of Appendix C, and keeping in mind that
vβ0

(b)

b
= β0 > v′β0+(b) by (C.6), suppose that vβ0(b)− bv′β0+(b) ≥ c. Then, for each γ ∈ (0, r),

it must be that f(b) − bf ′+(b) = vβγ ,γ(b) − bv′βγ ,γ+(b) ≥ c as well. Suppose indeed that the

contrary holds for such a γ. Then, since βγ > β0 by Proposition C.2.2 and u2(b)
b

= 1 > u′2+(b)

by (C.10), one would have

c > vβγ ,γ(b)− bv′βγ ,γ+(b)

= u1(b)− bu′1+(b) + βγ[u2(b)− bu′2+(b)]

> u1(b)− bu′1+(b) + β0[u2(b)− bu′2+(b)]

= vβ0(b)− bv′β0+(b),

a contradiction. The claim follows. Now, under (49), one has by (48)

lim
t→∞

ln(Xt)

t
= λ

∫

[b,2b)

ln

(
w − b

b

)
µw(dw) + γ. (E.12)

The remainder of the proof then consists in constructing appropriate upper and lower bounds

for
∫

[b,2b)
ln

(
w−b

b

)
µw(dw). Consider first the upper bound. Writing (C.18) at wp and using

(C.17) along with the fact that v is positive and increasing yields

wp =
µ− λC − γc− (r − γ)v(wp)− λ[v(wp)− v(wp − b)]

ρ− r
<

µ− λC

ρ− r
,

uniformly in γ. Let wp = µ−λC
ρ−r

and define auxiliary processes {wt}t≥0 and {lt}t≥0 by

wt = w0 +

∫ t−

0

{
(ρws + λb) ds− b

(
ws − b

b
∧ 1

)
dNs − dls

}
, (E.13)

lt = max{w0 − wp, 0}+

∫ t

0

(ρwp + λb)1{ws+= wp} ds (E.14)

for all t ≥ 0. Observe that the process {wt}t≥0 is independent of γ. It is easy to check from
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(42), (43), (E.13) and (E.14) that wt ≤ wt for all t ≥ 0. Proceeding as in Claim 1 of the

proof of Proposition 4, one can further show that {wTk
}k≥1 has a unique stationary initial

distribution µw and that

∫

[b,2b)

ln

(
w − b

b

)
µw(dw) ≤

∫

[b,2b)

ln

(
w − b

b

)
µw(dw) < 0,

uniformly in γ. Here the strict inequality follows from the fact that for each k ≥ 1 and

w ∈ (b, wp], there is a strictly positive probability that wTk+1
< w given that wTk+1

≥ w,

which implies in turn that the lower bound of the support of the stationary initial distribution

µw of {wTk
}k≥1 is b. Therefore, for γ close enough to 0,

λ

∫

[b,2b)

ln

(
w − b

b

)
µw(dw) + γ < 0,

from which (50) follows by (E.12). Consider next the lower bound. By (E.7), one has

∫

[b,2b)

ln

(
w − b

b

)
µw(dw) ≥ − λ

ρ− γ + λ
,

uniformly in γ. Therefore, if γ > λ2

ρ−γ+λ
,

λ

∫

[b,2b)

ln

(
w − b

b

)
µw(dw) + γ > 0,

from which (51) follows by (E.12). Hence the result. ¥

Proof of Proposition 6. Consider for each k ≥ 1 the σ–fields

Fk
1 = σ((w0, T1 − T0), (wT1 , T2 − T1), . . . , (wTk−1

, Tk − Tk−1)),

F∞
k = σ((wTk−1

, Tk − Tk−1), (wTk
, Tk+1 − Tk), . . .),

(E.15)

and denote by

T =
∞⋂

k=1

F∞
k (E.16)

the corresponding tail σ–field. Then the following zero-one law holds.

Claim 4 For each E ∈ T , either P[E] = 0 or P[E] = 1.

Proof. One first shows that for each ε > 0, there exists n0 ≥ 1 such that
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∆(k, n, w, t, A) = P[(wTk+n−1
, Tk+n − Tk+n−1) ∈ A |(wTk−1

, Tk − Tk−1) = (w, t)]

−P[(wTk+n−1
, Tk+n − Tk+n−1 ∈ A)]

≤ ε

(E.17)

for all k ≥ 1, n ≥ n0, (w, t) ∈ [b, wp] × R+ and A ∈ B([b, wp] × R+). A standard monotone

class argument implies that it is enough to verify (E.17) for sets A =
⋃m

i=1 Ei
1 ×Ei

2 that are

finite unions of disjoint measurable rectangles in B([b, wp]×R+). Now, fix some such set A,

and let Ẽ1
1 , . . . , Ẽ

m̃
1 be the atoms of the field of subsets of

⋃m
i=1 Ei

1 generated by E1
1 , . . . , E

m
1 .

The sets Ẽ1
1 , . . . , Ẽ

m̃
1 form a partition of

⋃m
i=1 Ei

1. Define

Ĩ+ = {i ∈ {1, . . . , m̃}|P[wTk+n−1
∈ Ẽi

1 |(wTk−1
, Tk − Tk−1) = (w, t)]−P[wTk+n−1

∈ Ẽi
1] ≥ 0}.

As in Claim 1 of the proof of Proposition 4, let T ∗ be the adjoint operator associated to the

transition function P of {wTk
}k≥1, and let ‖ · ‖TV be the total variation norm over the space

∆([b, wp]) of Borel probability measures over [b, wp]. Finally, define h as in Claim 2 of the

proof of Proposition 4, and let µwT k
be the distribution of wTk

. One then has

∆(k, n, w, t, A)

=
m∑

i=1

{P[wTk+n−1
∈ Ei

1 |(wTk−1
, Tk − Tk−1) = (w, t)]−P[wTk+n−1

∈ Ei
1]}λ[Ei

2]

≤ P

[
wTk+n−1

∈
⋃

i∈Ĩ+

Ẽi
1 |(wTk−1

, Tk − Tk−1) = (w, t)

]
−P

[
wTk+n−1

∈
⋃

i∈Ĩ+

Ẽi
1

]

≤ 1

2
‖T ∗n−1(δ[h((w−b)∨b,t)+b]∧wp)− T ∗n−1(µwT k

)‖TV

≤ 1

2
(1− e−λtb,wp )n−1‖δw − µwT k

‖TV

≤ (1− e−λtb,wp )n−1,

where the first equality follows from the fact that Tk − Tk−1 is independent of any random

variable measurable with respect to Fk−1
0 , and thus in particular of wTk−1

, the first inequality

from the definition of Ĩ+ and from the assumption that the rectangles that make up A are

disjoint, the second inequality from the definitions of T ∗, h and µwT k
, and the third inequality
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from the fact that, as shown in Claim 1 of the proof of Proposition 4, T ∗ is a contraction

of modulus 1 − e−λtb,wp . Thus (E.17) holds as soon as n0 ≥ 1 + ln(ε)

ln(1−e
−λtb,wp )

, uniformly in

(k, n, w, t, A). The remainder of the proof closely follows Bártfai and Révész (1967). As in

their Example 2, a consequence of condition (E.17) is that for each ε > 0, there exists n0 ≥ 1

such that the following mixing property holds:

P[E |Fk
1 ]−P[E] ≤ ε (E.18)

for all k ≥ 1, n ≥ n0, and E ∈ F∞
k+n, P–almost surely. Fix some E ∈ T , so that in particular

E ∈ F∞
k+n for all n ≥ n0. Since ε is arbitrary, the mixing property (E.18) then implies that

P[E |Fk
1 ] ≤ P[E] for all k ≥ 1, P–almost surely. From Doob (1953, Chapter VII, Theorem

4.3), it follows that P[E |∨∞
k=1Fk

1 ] ≤ P[E], P–almost surely. Since E ∈ T ⊂ ∨∞
k=1Fk

1 , one

finally has P[E] =
∫

E
P[E |∨∞

k=1Fk
1 ] dP ≤ ∫

E
P[E] dP = P[E]2. Hence the result. ¥

From now on, we implicitly suppose that limt→∞ Nt = ∞, which is without loss of

generality since this event occurs with probability 1.

Claim 5 Each of the events {limn→∞ XTn = 0} and {limn→∞ XT+
n

= ∞} belongs to T .

Proof. Consider first {limn→∞ XTn = 0}. Fix some k0 ≥ 1. For each n ≥ k0 + 1, one has

XTn = X0

N
T−n∏

k=1

(
wTk

− b

b
∧ 1

)
exp

(∫ Tn

0

γ1{ws>wi} ds

)

= X0

n−1∏

k=1

(
wTk

− b

b
∧ 1

)

exp

(
γ

{
n∑

k=1

(Tk − Tk−1)−
n∑

k=1

[
tw

T+
k−1

,wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi}

})
(E.19)

= XTk0

n−1∏

k=k0

(
wTk

− b

b
∧ 1

)

exp

(
γ

{
n∑

k=k0+1

(Tk − Tk−1)−
n∑

k=k0+1

[
tw

T+
k−1

,wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi}

})

with
∏
∅ = 1 by convention, where the second equality follows from (E.9) and from the fact

that NT−n = n−1. Since XTk0
is a strictly positive random variable, (E.15) and (E.19) jointly

imply that {limn→∞ XTn = 0} ∈ F∞
k0+1. Since k0 is arbitrary, {limn→∞ XTn = 0} ∈ T by
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(E.16). The proof for {limn→∞ XT+
n

= ∞} is similar, observing that

XT+
n

= XT+
k0

n∏

k=k0+1

(
wTk

− b

b
∧ 1

)

exp

(
γ

{
n∑

k=k0+1

(Tk − Tk−1)−
n∑

k=k0+1

[
tw

T+
k−1

,wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi}

})

and that XT+
k0

is a finite random variable. Hence the result. ¥

Claim 6 One has

{limt→∞ Xt = 0} = {limn→∞ XTn = 0},

{limt→∞ Xt = ∞} = {limn→∞ XT+
n

= ∞}.

Proof. Consider first {limt→∞ Xt = 0}. For each ω ∈ {limt→∞ Xt = 0} and ε > 0, there

exists t0(ω, ε) ≥ 0 such that |Xt(ω)| ≤ ε for all t ≥ t0(ω, ε). Since the sequence (Tn(ω))n≥1 is

strictly increasing and diverges to∞, there exists n0(ω, ε) ≥ 1 such that Tn(ω) ≥ t0(ω, ε) and

hence |XTn(ω)(ω)| ≤ ε for all n ≥ n0(ω, ε). As a result of this, ω ∈ {limn→∞ XTn = 0} and

thus {limt→∞ Xt = 0} ⊂ {limn→∞ XTn = 0}. Conversely, for each ω ∈ {limn→∞ XTn = 0}
and ε > 0, there exists n0(ω, ε) ≥ 1 such that |XTn(ω)(ω)| ≤ ε for all n ≥ n0(ω, ε). Since

the process {Xt}t≥0 is increasing on any random interval (Tk−1, Tk], k ≥ 1, it follows that

|Xt(ω)| ≤ ε for all t > Tn0(ω,ε). As a result of this, ω ∈ {limt→∞ Xt = 0} and thus

{limn→∞ XTn = 0} ⊂ {limt→∞ Xt = 0}. Hence {limt→∞ Xt = 0} = {limn→∞ XTn = 0},
as claimed. The proof that {limt→∞ Xt = ∞} = {limn→∞ XT+

n
= ∞} is similar and is

therefore omitted. ¥

Combining Claims 4 to 6 completes the proof of Proposition 6. ¥

F A Heuristic Analysis of the Non Constant Returns

to Scale Case

In this appendix, we relax the constant returns to scale assumption, and provide a heuristic

assessment of the robustness of our results to small non-linear perturbations in the private

benefits function. Specifically, suppose that the private benefits from shirking are represented

by a function

Bε(X) = BX + εXφ(X) (F.1)
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of firm size X, where ε is a positive number and φ a bounded, positive, increasing and

differentiable function.3 In the paper, we consider the constant returns to scale case where

ε = 0. To assess the robustness of our analysis to this assumption, we heuristically discuss

below what happens when ε is small, but strictly positive. We argue that the key qualitative

properties of the optimal contract are upheld for such a small perturbation.

Denote the principal’s value function by F ε. The Hamilton–Jacobi–Bellman equation

now writes as:

rF ε(Xt,Wt−) = Xt(µ− λC) + max{−Xt`t + (ρWt− + λHt −Xt`t)F
ε
W (Xt,Wt−)

+ Xtgt[F
ε
X(Xt,Wt−)− c]

−λ[F ε(Xt,Wt−)− F ε(Xtxt,Wt− −Ht)]},

(F.2)

where the maximization in (F.2) is over the set of controls (gt, Ht, `t, xt) that satisfy

0 ≤ gt ≤ γ,

Ht ≥ Bε(Xt)

∆λ
,

`t ≥ 0,

Wt− −Ht ≥ Bε(Xtxt)

∆λ
.

(F.3)

The second of these constraints is the agent’s date t incentive compatibility constraint, while

the fourth of these constraints, which parallels condition (19) in the paper, expresses the

fact that if a loss occurs at date t, reducing by Ht the continuation utility of the agent, it

must still be possible to provide incentives after this loss, which requires further reducing

the agent’s utility by at least Bε(Xtxt)
∆λ

, where Xtxt is the size of the firm after the date t loss.

Optimizing with respect to `t The first-order condition with respect to `t is

F ε
W (Xt, Wt−) ≥ −1, (F.4)

with equality only if `t > 0. Call W p,ε(Xt) the first value of Wt− at which (F.4) holds as

an equality; this corresponds to the payment threshold for a given size Xt. In the constant

3These assumptions ensure in particular that Bε is invertible, and that, in the positive orthant, the graph
of Bε lies in a cone pointed at the origin and whose upper and lower edges cross the axes at the origin only.
Since φ is bounded, there is no loss of generality in assuming that it is positive: the situation with a negative
φ could be mimicked by starting from a smaller value of B.
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returns to scale case, one has W p,0(Xt) = Xtw
p. As in Property 1 of the paper, payments

are made only when Wt− ≥ W p,ε(Xt). For the purpose of this heuristic presentation, we

shall assume without proof that the mapping X 7→ W p,ε(X)
X

converges uniformly to wp as ε

goes to 0.

Optimizing with respect to xt Consider now the case where Wt− < W p,ε(Xt). Property

2 in the paper states that, in the optimal contract, downsizing is imposed only as the last

resort. Let us now examine what happens when ε > 0. Differentiating the objective function

on the right-hand side of (F.2) with respect to xt yields XtF
ε
X(Xtxt,Wt− −Ht). In the limit

case where ε = 0, this is equal to

f

(
Wt− −Ht

Xtxt

)
− Wt− −Ht

Xtxt

f ′
(

Wt− −Ht

Xtxt

)
> f(b)− bf ′+(b) > 0, (F.5)

where, recalling that b = B
∆λ

, the first inequality follows from the fact that

Wt− −Ht

Xtxt

≥ b +
ε

∆λ
φ(Xtxt) > b

by (F.1) and (F.3) along with the strict concavity of f over [b, wp], while the second inequality

reflects that f vanishes at 0 and is globally concave over R+ but not differentiable at b. It

follows from (F.5) that F 0
X(Xtxt,Wt−−Ht) is positive and bounded away from 0 over the set

of 4-tuples (Xt, xt, Wt− , Ht) that satisfy (F.3) and Wt− < W p,ε(Xt). Hence, by continuity,

one can reasonably expect that, for ε small enough, F ε
X(Xtxt,Wt− − Ht) > 0 for any such

4-tuple; this is for instance the case if the derivative
∂F ε

X

∂ε
is bounded. In that case, it is

optimal to let xt be as large as possible in (F.2). This yields

xt =
(Bε)−1(∆λ(Wt− −Ht))

Xt

∧ 1, (F.6)

which generalizes Property 2 in the paper, reflecting that, for a given degree of incentives as

measured by Ht, downsizing is imposed only when necessary.

Optimizing with respect to Ht Consider again the case where Wt− < W p,ε(Xt).

Property 3 in the paper states that, in the optimal contract, the exposure to risk of the

agent is minimized by letting ht equal the minimal amount b consistent with her exerting

effort, or, equivalently, by letting Ht equal Xtb. Let us now examine what happens whenever

ε > 0. Substituting (F.6) into (F.2), and right-differentiating the objective function on the

right-hand side of (F.2) with respect to Ht yields
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λ
[
F ε

W (Xt,Wt−)− F ε
W+(Xt, Wt− −Ht)

]
(F.7)

if Bε(Xt) < ∆λ(Wt− −Ht), and

λ

[
F ε

W (Xt,Wt−)− F ε
W+((Bε)−1(∆λ(Wt− −Ht)),Wt− −Ht)

−F ε
X((Bε)−1(∆λ(Wt− −Ht)),Wt− −Ht)

∆λ

(Bε)′((Bε)−1(∆λ(Wt− −Ht)))

] (F.8)

if Bε(Xt) > ∆λ(Wt−−Ht). Examining each case in turn, we argue below that the expressions

in (F.7) and (F.8) are negative for ε small enough. In that case, it is optimal to let Ht be as

small as possible in (F.2). This yields

Ht =
Bε(Xt)

∆λ
, (F.9)

which generalizes Property 3 in the paper, reflecting that it is unnecessary to expose the

agent to more risk than what is required to provide her incentives to exert effort.

Case 1: Bε(Xt) < ∆λ(Wt− − Ht) Denote by Dε
1(Xt,Wt− , Ht) the expression in (F.7),

divided by λ. In the limit case where ε = 0, this is equal to

D0
1(Xt,Wt− , Ht) = f ′

(
Wt−

Xt

)
− f ′+

(
Wt− −Ht

Xt

)
. (F.10)

Using the concavity of f along with the fact that

Ht ≥ bXt +
ε

∆λ
φ(Xt)

by (F.1) and (F.3), and recalling that wt =
Wt−
Xt

, it follows from (F.10) that

D0
1(Xt,Wt− , Ht) ≤ f ′(wt)− f ′+(wt − b). (F.11)

Since we have assumed that the mapping X 7→ W p,ε(X)
X

converges uniformly to wp as ε

goes to 0, wt < wp + O(ε) for ε small enough, uniformly in the pairs (Xt,Wt−) that satisfy

Wt− < W p,ε(Xt). Therefore, since the mapping w 7→ f ′(w) − f ′+(w − b) is negative and

bounded away from 0 over (b, wp] as f is strictly concave over this interval and globally

concave over R+ but not differentiable at b, it follows from (F.11) that, for ε small enough,

D0
1(Xt,Wt− , Ht) is also negative and bounded away from 0 over the set of triples (Xt,Wt− , Ht)

that satisfy (F.3), Wt− < W p,ε(Xt) and Bε(Xt) < ∆λ(Wt− −Ht). Hence, by continuity, one
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can reasonably expect that, for ε small enough, Dε
1(Xt,Wt− , Ht) < 0 for any such triple; this

is for instance the case if the derivative
∂F ε

W

∂ε
is bounded.

Case 2: Bε(Xt) > ∆λ(Wt− − Ht) Denote by Dε
2(Xt,Wt− , Ht) the expression in (F.8),

divided by λ. In the limit case where ε = 0, this is equal to

D0
2(Xt,Wt− , Ht) = f ′

(
Wt−

Xt

)
− f(b)

b
. (F.12)

An alternative way to see this is that, when ε = 0, the terms in Ht in the objective function

on the right-hand side of (F.2), HtF
0
W (Xt,Wt−)+F 0((B0)−1(∆λ(Wt−−Ht)),Wt−−Ht), can

be rewritten as Htf
′
(

Wt−
Xt

)
+(Wt− −Ht)

f(b)
b

, from which (F.12) follows upon differentiating

with respect to Ht. Now, by (F.1) and (F.3),

Wt−

Xt

≥ b +
ε

∆λ
φ(Xt) > b.

Therefore, since f vanishes at 0 and is globally concave over R+ but not differentiable at b,

one has from (F.12)

D0
2(Xt,Wt− , Ht) ≤ f ′+(b)− f(b)

b
< 0. (F.13)

It follows from (F.13) that, for ε small enough, D0
2(Xt,Wt− , Ht) is negative and bounded

away from 0 over the set of triples (Xt,Wt− , Ht) that satisfy (F.3), Wt− < W p,ε(Xt) and

Bε(Xt) > ∆λ(Wt− −Ht). Hence, by continuity, one can reasonably expect that, for ε small

enough, Dε
2(Xt, Wt− , Ht) < 0 for any such triple; this is for instance the case if the derivatives

∂F ε
X

∂ε
and

∂F ε
W

∂ε
are bounded.

An important consequence of (F.9) is that downsizing takes place following a loss at date

t if and only if Wt− < 2Bε(Xt)
∆λ

, that is, if and only if it is absolutely necessary, in order to

maintain limited liability while ensuring incentive compatibility.

Optimizing with respect to gt Consider again the case where Wt− < W p,ε(Xt). It

follows from (F.2) that it is optimal to let gt = γ if

F ε
X(Xt,Wt−) > c, (F.14)

and gt = 0 otherwise. Let W i,ε(Xt) = inf {Wt− > Bε(Xt) | F ε
W (Xt,Wt−) > c}. Note that,

like in the constant returns to scale case, such a value need not exist if c is too high. In

the constant returns to scale case, one has W i,0(Xt) = Xtw
i with wi < wp whenever it is
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then strictly optimal to invest, that is if f(wp) + wp > c. In particular, it is optimal to

invest at rate γ as soon as
Wt−
Xt

exceeds wi. Now consider an arbitrary pair (Xt,Wt−) such

that
Wt−
Xt

< W p,ε(Xt)
Xt

= wp + O(ε), and, as usual, let wt =
Wt−
Xt

. Then, if wt > wi, one has

F 0
X(Xt,Wt−) = f(wt)−wtf

′(wt) > c. Observe that this remains true even if wt > wp, for then

F 0
X(Xt,Wt−) = f(wp) + wp > c as f ′(wt) = −1. Hence, by continuity, one can reasonably

expect that, for ε small enough, (F.14) holds for any such pair; this is for instance the case

if the derivative
∂F ε

X

∂ε
is bounded. It is then optimal to invest at rate γ at any such pair

whenever ε is small enough, which generalizes Property 4 in the paper. In terms of Figure

1 in the paper, this indicates in particular that any straight line W = Xw whose slope w

lies strictly between wi and wp, and which therefore belongs to the investment region in the

constant returns to scale case, also belongs to the investment region in the non constant

returns to scale case for ε small enough.

Overall, the above analysis suggests that, if the mapping (ε,X, W ) 7→ F ε(X,W ) is not

too irregular, then the main qualitative features of the optimal contract under constant

returns to scale are robust to small perturbations in the private benefit function. Thus the

optimal contract under a small perturbation from constant returns to scale could be depicted

on a figure similar to Figure 1 in the paper. The differences would be that the boundary

of the downsizing region would be the non-linear function Bε(X)
∆λ

of firm size X instead of

the linear function Xb, and that the upper and lower boundaries of the investment and no

transfers region would be the (presumably non-linear) functions W p,ε(X) and W i,ε(X) of

firm size X instead of the linear functions Xwp and Xwi.
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