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Controlled diffusion in a random oscillating medium

Consider the Ito controlled stochastic differential equation

dxs = f (xs, αs) ds + σ(xs) dWs, x0 = x ,

where Ws is a Brownian motion, and cost functional

J(x , α) := Ex

∫ τx

0
l(xs, αs) ds

where τx is the exit time of xs from a given open set Ω.
The value function v(x) := infα J(x , α) is the unique solution of the
Dirichlet problem for the (degenerate) elliptic PDE

−1
2

tr(σσT D2u) + max
a∈A
{−f · Du − l} = 0 in Ω, u = 0 on ∂Ω.
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Bensoussan - Blankenship 1988 considered the model of highly
oscillating random coefficients

dxs = f
(

xs,
xs

ε
, αs, ω

)
ds + σ

(xs

ε
, ω
)

dWs, x0 = x ,

with cost functional

J(x , α) := Ex

∫ τx

0
l(xs,

xs

ε
, αs, ω) ds

where the expectation Ex is taken w.r.t. Ws, NOT w.r.t. ω.
Then the value function vε(x , ω) is random and solves the stochastic
PDE

−1
2

tr
(
σσT

(x
ε
, ω
)

D2u
)

+ H
(

x ,
x
ε
,Du, ω

)
= 0

with

H (x , y ,p, ω) := max
a∈A
{−f (x , y ,a, ω) · Du − l(x , y ,a, ω)}.
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Bensoussan - Blankenship assume σσT > 0 positive definite, so the
Bellman equation is uniformly elliptic (and quasilinear).
They assume σσT and H stationary w.r.t. an ergodic group of
translations, and prove that vε(x , ω)→ v(x) in H1

0 , where v solves

−tr(QD2v) + H(x ,Dv) = 0

and there is a formula for the effective matrix Q and Hamiltonian H.

OPEN QUESTION: is v the value function of an "effective control
problem" ?

Caffarelli - Souganidis -Wang 2005 studied fully nonlinear uniformly
elliptic PDEs (including general Bellman-Isaacs equations) under the
same stationary- ergodic assumption.
Their effective operator has a less explicit representation (and the
convergence is different), so the above question is harder in their case.
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Recall of Bellman-Isaacs equations for controlled
diffusions

We consider now the differential game

dxs = f (xs, αs, βs) ds + σ(xs, αs, βs) dWs, x0 = x ,

where βs is the control of a second player that wants to MAXIMIZE the
cost functional

J(t , x , α, β) := Ex

[∫ t

0
l(xs, αs, βs) ds + h(xt )

]
.

This includes stochastic control (if B is a singleton).
The lower and upper value functions are defined in terms of
nonanticipating strategies.
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The (lower) value function is the unique solution of the Cauchy
problem for the (possibly degenerate) parabolic PDE

∂u
∂t

+ min
b∈B

max
a∈A
{La,bu − l(·,a,b)} = 0

where La,b is the generator of the diffusion process with constant
controls αs = a, βs = b:

La,bu := −1
2

trace(σσT D2u)− f · Du.

1 player: P.-L. Lions 1983;
Comparison Principle: R. Jensen 1988, Ishii 1989
2 players: Fleming - Souganidis 1989
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A different form of randomness

In practical applications one chooses a form of the system and costs
depending on a vector of parameters y :

f = f (x , y ,a,b), σ = σ(x , y ,a,b), l = l(x , y ,a,b)

gets some historical values y1, ..., yN of the parameters and then
estimates φ = f , l , σ by

φ ≈ 1
N

N∑
i=1

φi , φi := φ(x , yi ,a,b),

the arithmetic mean of the observed data.

QUESTION: is this correct? and why?

Rmk: the data y1, ..., yN often look like samples of a stochastic
process. How can we model them?
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Example and motivation: Financial models

The evolution of stock S is described by

d log Ss = γ ds + σ dWs

but the volatility σ is not really a constant, it rather looks like an ergodic
stochastic process, mean-reverting and evolving on a time scale faster
than the stock prices, see
Fouque, Papanicolaou, Sircar: Derivatives in financial markets with
stochastic volatility, 2000.
Their model for fast stochastic volatility σ is

d log Ss = γ ds + σ(ys) dWs

dys = 1
ε (m − ys) ds + ν√

ε
dW̃s

for some σ(·) > 0 and with correlated W. and W̃. .
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They show empirical data supporting the theory and discuss several
models , mostly for option pricing problems.

Use asymptotic expansions methods for the PDEs associated to the
problems.

Most problems have NO control, so it is not hard to justify the formal
calculations.

For problems with control the justification can be done by viscosity
solutions of the Bellman equation.

Martino Bardi (Università di Padova) Multiscale B-I equations Vancouver, July 2009 10 / 30



They show empirical data supporting the theory and discuss several
models , mostly for option pricing problems.

Use asymptotic expansions methods for the PDEs associated to the
problems.

Most problems have NO control, so it is not hard to justify the formal
calculations.

For problems with control the justification can be done by viscosity
solutions of the Bellman equation.

Martino Bardi (Università di Padova) Multiscale B-I equations Vancouver, July 2009 10 / 30



Merton portfolio optimization problem

Invest βs in the stock Ss, 1− βs in a bond with interest rate r .
Then the wealth xs evolves as

d xs = (r + (γ − r)βs)xs ds + xsβs σ(ys) dWs

dys = 1
ε (m − ys) ds + ν√

ε
dW̃s

and want to maximize the expected utility at time t , E [h(xt )] for some h
increasing and concave. The HJB equation is

∂V ε

∂t
− rxV ε

x −max
b

{
(γ − r)bxV ε

x +
b2x2σ2

2
V ε

xx

}
=

(m − y)V ε
y + ν2V ε

yy

ε

QUESTIONS:
Is the limit as ε→ 0 a Merton problem with constant volatility σ?

If so, is σ an average of σ(·) ?
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Modelling random parameters

A process ỹτ is ergodic with invariant measure µ if for all measurable φ

lim
T→+∞

E

[
1
T

∫ T

0
φ(ỹτ ) dτ

]
=

∫
φ(y) dµ(y) =: E [φ].

Define yεt := ỹt/ε. Suppose you observe yεt at the times t = i/N,
i = 1, ...,N. Want to estimate quantities depending on yεt (e.g., the
system and cost φ = f , σ, l) by

1
N

N∑
i=1

φi , φi := φ(x , yεi/N ,a,b).

For N large and ε small, setting τ = t/ε we get

1
N

N∑
i=1

φi ≈
∫ 1

0
φ(yεt ) dt = ε

∫ 1/ε

0
φ(ỹτ ) dτ ≈ E [φ].
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Define yεt := ỹt/ε. Suppose you observe yεt at the times t = i/N,
i = 1, ...,N. Want to estimate quantities depending on yεt (e.g., the
system and cost φ = f , σ, l) by

1
N

N∑
i=1

φi , φi := φ(x , yεi/N ,a,b).

For N large and ε small, setting τ = t/ε we get

1
N

N∑
i=1

φi ≈
∫ 1

0
φ(yεt ) dt = ε

∫ 1/ε

0
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Conclusion:
The arithmetic mean of data is a good approximation of a function of
the random parameters if

there are many data, and

the parameters are an ergodic process evolving on a time scale
much faster than the state variables.

QUESTION:
What are the right quantities to average?

The system data f , σ and cost l themselves or something else?
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Two-scale model of DGs with random parameters

If ỹτ solves

(FS) dỹτ = g(ỹτ ) dτ + ν(ỹτ ) dWτ ,

and ys = ỹs/ε, we get the two-scale system

(2SS)
dxs = f (xs, ys, αs, βs) ds + σ(xs, ys, αs, βs) dWs xs ∈ Rn,

dys = 1
εg(ys) ds + 1√

ε
ν(ys) dWs, ys ∈ Rm,

Want to understand the limit as ε→ 0 :

a Singular Perturbation problem.

Main assumption: some form of ergodicity of the fast subsystem (FS).
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The PDE formulation

V ε solves
∂V ε

∂t +H
(

x , y ,DxV ε,D2
xxV ε, 1√

ε
D2

xyV ε
)
− 1

εLV ε = 0 in R+ × Rn × Rm,

V ε(0, x , y) = h(x , y) in Rn × Rm,

H (x , y ,p,X ,Z ) := min
b∈B

max
a∈A

{
−tr(σσT X )− f · p − l − tr(σνZ T )

}
L := trace(ννT D2

yy ) + g · Dy .

It is a Singular Perturbation or Penalization problem for the B-I PDE.
Since all the derivatives w.r.t. y are penalized we expect

V ε(t , x , y)→ V (t , x)

the limit V satisfy a PDE in lower dimension n instead of n + m.
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Linear averaging of the data

Assume (FS) is ergodic with invariant measure µ.
Denote with 〈φ〉 :=

∫
φ(y)dµ(y).

Theorem [Kushner, book 1990]
If there is only one player (B = singleton), the system has σ = σ(x , y)
possibly degenerate but independent of the control, and

f (x , y ,a) = f0(x , y)+ f1(x ,a), l(x , y ,a) = l0(x , y)+ l1(x ,a), h = h(x)

then the linear averaging of the data is the correct limit, i.e.,

lim
ε→0

V ε(t , x , y) = V (t , x) := inf
α.

E
[∫ t

0
〈l〉(xs, αs) ds + h(xt )

]
,

dxs = 〈f 〉(xs, αs) ds + 〈σσT 〉1/2(xs) dWs
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Remarks:

Kushner proof is by probabilistic methods, hard to extend to
differential games;

Merton problem is not covered because the system has the term
xsβsσ(ys) dWs, where βs is the control;

the splitting assumption f = f0(x , y) + f1(x ,a) is also not satisfied
in some models (see later);

the results says that the limit "effective" PDE is

∂V
∂t
− trace(〈σσT 〉D2

xxV ) + max
a∈A
{−〈f 〉 · DxV − 〈l〉} = 0 in R+×Rn
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The PDE approach


∂V ε

∂t +H
(

x , y ,DxV ε,D2
xxV ε, 1√

ε
D2

xyV ε
)
− 1

εLV ε = 0 in R+ × Rn × Rm,

V ε(0, x , y) = h(x , y) in Rn × Rm,

1. Look for effective H and h such that the candidate limit problem is

∂V
∂t

+ H
(

x ,DxV ,D2
xxV

)
= 0 in R+ × Rn, V (0, x) = h(x)

2. Prove the convergence V ε(t , x , y)→ V (t , x) solution of the effective
Cauchy problem.

3. Interpret the limit PDE as a Bellman-Isaacs equation and find a
limiting effective control-game problem.
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Theorem [periodic case, O. Alvarez - M.B. 2007, Mem. A.M.S. 2010]

In the general DG model assume all data are Zm-periodic in y and
ννT (y) > 0.
Then the fast subsystem (FS) has a unique invariant measure µ and

V ε(t , x , y)→ V (t , x) as ε→ 0, locally uniformly

and V is the unique solution of
∂V
∂t +

∫
H
(
x , y ,DxV ,D2

xxV ,0
)

dµ(y) = 0 in R+ × Rn

V (0, x) =
∫

h(x , y) dµ(y)

Note the very simple formulas

H(x ,p,X ) = 〈H(x , ·,p,X ,0)〉, h(x) = 〈h(x , ·)〉.
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Main theorem: unbounded fast variables

To fit the financial models we assume

|f (x , y ,a,b)|, |σ(x , y ,a,b)| ≤ C|x |

so R+
n is invariant for xs. Assume also

|g(y)|, |ν(y)| ≤ C(1 + |y |).

Main assumption on (FS)

ννT (y) > 0 and there exists w ∈ C(Rd ), k > 0,R0 > 0:

(L) −Lw ≥ k ∀ |y | > R0, lim
|y |→+∞

w(y) = +∞

Proposition
(L) =⇒ ∃ ! invariant measure µ for (FS).

Martino Bardi (Università di Padova) Multiscale B-I equations Vancouver, July 2009 20 / 30



Example 1. The Ornstein-Uhlenbeck process

dỹτ = (m − ỹτ ) dτ +
√

2 ν dWτ

(m, ν constant) satisfies (L) with w(y) = |y |2 and µ ∼ N (m, ννT ) is
Gaussian.
It is also mean-reverting, i.e., the drift pulls the process back to its
mean value m.

Example 2. ν(y) bounded and lim|y |→∞ g(y) · y = −∞ =⇒ (L)
"if ỹτ gets very large the drift of (FS) pulls it back".

Example 3. lim sup|y |→∞
[
g(y) · y − tr ννT (y)

]
< 0 =⇒ (L).

Remark. The proof relies on results by Hasminskii 1980.
P.L. Lions - Musiela (2002 unpublished) say that (L) is essentially
equivalent to the ergodicity of (FS).
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Theorem [unbounded case, M.B., Cesaroni, Manca 2009]
Under the assumptions above

V ε(t , x , y)→ V (t , x) as ε→ 0, locally uniformly

and V is the unique solution of
∂V
∂t +

∫
H
(
x , y ,DxV ,D2

xxV ,0
)

dµ(y) = 0 in R+ × R+
n

V (0, x) =
∫

h(x , y) dµ(y)

The conclusion is the same as in the periodic case.
Here µ is the unique invariant measure of the fast subsystem (FS)
implied by (L).
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Ingredients of the proof:

Liouville property: (L) =⇒ any bounded subsolution of
−Lu = 0 is constant.

There exist (smooth) approximate correctors wδ

δwδ −Lwδ +H(x , y ,p,X ,0) = 0, |δwδ(y)| ≤ C(1 + |y |2) in Rm,

lim
δ→0
−δwδ(y) = 〈H(x , ·,p,X ,0)〉 =: H(x ,p,X )

Relaxed semilimits V and V are idependent of y and sub- and
supersolution of the effective PDE by adapting L.C. Evans’
Perturbed Test Function Method (as in homogenization);

V ≤ 〈h(x , ·)〉 ≤ V at t = 0 by adapting the method of M.B. - O.
Alvarez ARMA 2003 for the periodic case;

Comparison Principle for the effective Cauchy problem =⇒
V ≤ V and therefore the convergence is locally uniform.
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The Theorem settles steps 1 and 2.
Step 3: find the effective control-game problem.

Corollary [extends Kushner to games and h = h(x , y)]

For split systems, i.e.,

σ = σ(x , y), f = f0(x , y) + f1(x ,a,b), l = l0(x , y) + l1(x ,a,b),

the linear averaging of the data is the correct limit, i.e.,

lim
ε→0

V ε(t , x , y) = V (t , x) := inf
α[·]

sup
β.

E
[∫ t

0
〈l〉(xs, α[β]s, βs) ds + 〈h〉(xt )

]
,

dxs = 〈f 〉(xs, α[β]s, βs) ds + 〈σσT 〉1/2(xs) dWs

Proof: under these assumptions
∫

dµ and minb∈B maxa∈A commute

H =

∫
min
b∈B

max
a∈A
{...}dµ(y) = min

b∈B
max
a∈A

∫
{...}dµ(y).

Martino Bardi (Università di Padova) Multiscale B-I equations Vancouver, July 2009 24 / 30



When can we find an effective control problem?

There always exist sets A′,B′, control system f , σ, and cost l such that

H :=

∫
min
b∈B

max
a∈A

{
−trace(σσT D2

xx )− f · Dx − l
}

dµ(y)

= min
b′∈B′

max
a′∈A′

{
−trace(σσT D2

xx )− f · Dx − l
}
.

=⇒ V (t , x) := infα supβ E
[∫ t

0 l(xs, α[β]s, βs)ds + 〈h〉(xt )
]
, xs solving

dxs = f (xs, α[β]s, βs)ds + σ(xs, α[β]s, βs)dWs

This can be called an effective control problem - differential game, but
it is neither unique nor explicitly related to the original data.
In some cases we can write an explicit formula for it.
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Merton problem with stochastic volatility

Maximize E [h(xt )] for the system in R2

dxs = (r + (γ − r)βs)xs ds + xsβs σ(ys) dWs

dys = 1
ε (m − ys) ds + ν√

ε
dW̃s

with γ > r , σ > 0, βs ∈ [0,∞),
and Ws, W̃s possibly correlated scalar Wiener processes.

Assume the utility h has h′ > 0 and h′′ < 0.
Then expect a value function strictly increasing and concave in x , i.e.,
V ε

x > 0, V ε
xx < 0. The HJB equation becomes

∂V ε

∂t
−rxV ε

x +
[(γ − r)V ε

x ]2

σ2(y)2V ε
xx

=
1
ε

[
(m − y)V ε

y + ν2V ε
yy

]
in R+×R+×R+
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By the Theorem, V ε(t , x , y)→ V (t , x) as ε→ 0 and V solves

∂V
∂t
− rxVx +

(γ − r)2V 2
x

2Vxx

∫
1

σ2(y)
dµ(y) = 0 in R+ × R+

So the limit problem is a Merton problem with constant volatility

σ :=

(∫
1

σ2(y)
dµ(y)

)−1/2

a harmonic average of σ, NOT the linear average!
So if I have N empirical data σ1, ..., σN of the volatility, in the
Black-Scholes formula for option pricing (linear PDE!) I use the
arithmetic mean

σ2
a =

1
N

N∑
i=1

σ2
i

whereas in the Merton problem I use the harmonic mean

σ2
h =

(
1
N

N∑
i=1

1
σ2

i

)−1

≤σ2
a.
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A model in marketing with random parameters

Consider a duopoly: in a market with total sales M the sales of firm 1
are Ss, those of firm 2 are M − Ss, and αs, βs ≥ 0 are the advertising
efforts. Take Lanchester dynamics

Ṡs = (M − Ss)αs − βsSs

and objective functional

J =

∫ t

0

(
rSs + θαs

2 − βs
2
)

ds,

with θ > 0, see Jorgensen and Zaccour, book 2004. If the parameters
M, r , θ depend on a O-U process the system becomes

Ṡs = (M(ys)− Ss)αs − βsSs, S0 = x ,

dys = 1
ε (m − ys) ds + ν√

ε
dWs, y0 = y ,

not split because of the term M(ys)αs.
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The objective functional becomes

Jε = E
[∫ t

0

(
r(ys)Ss + θ(ys)α2

s − β2
s

)
ds
]

By the Theorem, V ε(t , x , y)→ V (t , x) as ε→ 0 and V solves

∂V
∂t
−
∫ (

r(y)x + (M(y)− x)2 V 2
x

4
− x2V 2

x
4θ(y)

)
dµ(y) = 0 in R+ × R

This is the Isaacs PDE for the game with system

Ṡs =

√
〈M2〉 − 2〈M〉Ss + S2

s αs − βsSs

that is NOT a Lanchester dynamics (i.e., affine in the state), and
objective functional

J =

∫ t

0

(
〈r〉Ss + 〈1

θ
〉−1α2

s − β2
s

)
ds

that is still linear in state and quadratic in the controls but with different
averages of the parameters.
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Conclusions

In control and game problems with random parameters driven by a fast
ergodic process the limit effective problem can be

1 of the same form and with parameters the historical mean of the
random ones (as in uncontrolled problems!)

2 of the same form, but the parameters are obtained by a different
averaging of the random ones (as in Merton)

3 of a form different from the original problem (as in the advertising
game).

The formula for the effective Hamiltonian is very simple, but there is no
general recipe for deducing from it an explicit effective control problem.
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