Fibre bundle structures of Schubert varieties

Edward Richmond*
William Slofstra

Oklahoma State University*
University of British Columbia*
UC Davis

January 17, 2014
1. Schubert varieties and fibre bundles

2. Smooth Schubert varieties and fibre bundles

3. Billey-Postnikov decompositions
Schubert varieties

- Let G be a semi-simple Lie group over \mathbb{C}.

 Fix $T \subseteq B \subseteq G$ a maximal torus and Borel subgroup of G.

 Let $P \subseteq G$ be a parabolic subgroup containing B.

- Let $W := N(T)/T$ denote the Weyl group of G.

 Let $W_P \subseteq W$ be the Weyl group of P.

- Let G/P be the partial flag variety.

 For any $w \in W^P \simeq W/W_P$ (min length coset rep), we have the Schubert variety

$$X^P_w := \overline{BwP}/P \subseteq G/P.$$
Schubert varieties: type A

- $G = SL(\mathbb{C}^n)$ with $\mathbb{C}^n = \text{Span}_\mathbb{C}\{e_1, \ldots, e_n\}$.

 $T=$diagonal matrices, $B=$upper triangular matrices.

- $W = S_n$ permutation matrices.

- G/B is the full flag variety

 \[\{ V_\bullet = (V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{C}^n) \mid \dim(V_i) = i \}. \]

- For any permutation matrix $w \in W$, we have the Schubert variety

 \[X^B_w = \{ V_\bullet \in G/B \mid \dim(V_i \cap E_j) \geq \text{rk}(w[i,j]) \} \]

 where $E_j = \text{Span}\{e_1, \ldots, e_j\}$.
Let Q be parabolic subgroup containing P and consider the projection

$$G/P \to G/Q$$

with fibre isomorphic to Q/P.

For $w \in W^P$, there is a unique parabolic decomposition $w = vu$ where $v \in W^Q$, $u \in W^P \cap W_Q$ and induced projection

$$X^P_w \to X^Q_v$$

with generic fibre isomorphic to X^P_u.

Remark: In general, not all fibres are isomorphic to X^P_u.

Edward Richmond (OSU-UBC)
Example. Consider

\[G/P = \{ V_\bullet = (V_1 \subset V_2 \subset V_3 \subset \mathbb{C}^4) \} \]

\[G/Q = \{ V_3 \subset \mathbb{C}^4 \} \]

with projection \(\pi(V_\bullet) = V_3 \).

- If \(w = s_1 s_2 s_3 s_1 \), then
 \[X_w^P = \{ V_\bullet \mid V_2 \subset E_3 \} \]
 where \(E_3 \) is a fixed 3-dim subspace.

- \(w = vu = (s_1 s_2 s_3)(s_1) \), and \(\pi(X_w^P) = X_v^Q = G/Q \) with fibre
 \[\pi^{-1}(V_3) = \{ (V_1, V_2) \mid V_1 \subset V_2 \subseteq V_3 \cap E_3 \} \]
 \[\cong \begin{cases}
 X_{s_1}^P & \text{dim}(V_3 \cap E_3) = 2 \\
 X_{s_1 s_2 s_1}^P & V_3 = E_3
 \end{cases} \]
Question: What makes a Schubert variety X_w^P smooth?

Theorem: Ryan (87), Wolper (89)

Let G/P be a type A flag variety.

The Schubert variety X_w^P is smooth if and only if there exists a parabolic subgroup Q containing P and $w = vu$ with $v \in W^Q$ and $u \in W^P \cap W_Q$ such that:

- X_v^Q and X_u^P are smooth Schubert varieties.
- The projection $X_w^P \to X_v^Q$ is locally trivial with fibre isomorphic to X_u^P.

Moreover, Q can be chosen to be a maximal parabolic containing P.
(i.e G/Q is a Grassmannian and Q/P has one less step then G/P)

Hence X_w^P can be written as a sequence of fibrations with each base isomorphic to a smooth Schubert variety of a Grassmannian.
Example. Consider

\[G/P = \{ V_\bullet = (V_1 \subset V_2 \subset V_3 \subset \mathbb{C}^4) \} \]

\[G/Q = \{ V_2 \subset \mathbb{C}^4 \} \]

with projection \(\pi(V_\bullet) = V_2 \).

- If \(w = s_1 s_2 s_3 s_1 \), then
 \[X^P_w = \{ V_\bullet \mid V_2 \subset E_3 \} \]

 is smooth

- \(w = vu = (s_1 s_2)(s_3 s_1) \), and \(X^Q_{s_1 s_2} = \{ V_2 \subset E_3 \} \) with fibre

 \[\pi^{-1}(V_2) = \{(V_1, V_3) \mid V_1 \subset V_2, V_2 \subset V_3 \} \cong X^P_{s_1 s_3} \cong \mathbb{CP}^1 \times \mathbb{CP}^1 \]
Question: What about other finite types?

Theorem: R-Slofstra (14)

Let G/P be a flag variety of any finite type.

The Schubert variety X^P_w is (rationally) smooth if and only if there exists a parabolic subgroup Q containing P and $w = vu$ with $v \in W^Q$ and $u \in W^P \cap W_Q$ such that:

- X^Q_v and X^P_u are (rationally) smooth Schubert varieties.
- The projection $X^P_w \to X^Q_v$ is locally trivial with fibre isomorphic to X^P_u.

Moreover, Q can be chosen to be a maximal parabolic containing P. In other words, G/Q is a **generalized Grassmannian** of appropriate type.

Hence X^P_w can be written as a sequence of fibrations with each base isomorphic to a (rationally) smooth Schubert variety of a generalized Grassmannian.
Classification of rationally smooth Schubert varieties

Remark: (Rationally) smooth Schubert varieties of generalized Grassmannians are classified. (G/P where P is maximal parabolic)

- Let W be a Coxeter group with simple generating set S and relations
 \[s^2 = e \quad \text{and} \quad (st)^{m_{st}} = e \]
 for some $m_{st} \in \{2, 3, \ldots, \infty\}$.

- For any $w \in W$, define the support $S(w) := \{ s \in S \mid s \leq w \}$.

- For any subset $J \subseteq S$, let $W_J \subseteq W$ denote the group generated by J and let W^J denote the minimal length coset representatives of W/W_J.

- We say $w \in W^J$ is a **maximal element** if it is the unique maximal length element in the set $W^J \cap W_{S(w)}$.
Let G/P be a generalized Grassmannian with $W_P = W_J$ and $J = S \setminus \{s\}$.

Then X_P^w is rationally smooth if and only if w is a maximal element of W^P, or w is one of the following elements:

<table>
<thead>
<tr>
<th>W</th>
<th>s</th>
<th>w</th>
<th>index set</th>
<th>smooth</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_n</td>
<td>s_n</td>
<td>$s_1 \ldots s_n$</td>
<td>$n \geq 2$</td>
<td>yes</td>
</tr>
<tr>
<td>B_n</td>
<td>s_1</td>
<td>$s_k s_{k+1} \cdots s_n s_{n-1} \cdots s_1$</td>
<td>$1 < k \leq n$</td>
<td>no</td>
</tr>
<tr>
<td>B_n</td>
<td>s_k</td>
<td>$u_{n,k+1} s_1 \cdots s_k$</td>
<td>$1 < k < n$</td>
<td>no</td>
</tr>
<tr>
<td>C_n</td>
<td>s_n</td>
<td>$s_1 \ldots s_n$</td>
<td>$n \geq 2$</td>
<td>no</td>
</tr>
<tr>
<td>C_n</td>
<td>s_1</td>
<td>$s_k s_{k+1} \cdots s_n s_{n-1} \cdots s_1$</td>
<td>$1 < k \leq n$</td>
<td>yes</td>
</tr>
<tr>
<td>C_n</td>
<td>s_k</td>
<td>$u_{n,k+1} s_1 \cdots s_k$</td>
<td>$1 < k < n$</td>
<td>yes</td>
</tr>
<tr>
<td>F_4</td>
<td>s_1</td>
<td>$s_4 s_3 s_2 s_1$</td>
<td>n/a</td>
<td>no</td>
</tr>
<tr>
<td>F_4</td>
<td>s_2</td>
<td>$s_3 s_2 s_1 s_4 s_3 s_2 s_3 s_1 s_2$</td>
<td>n/a</td>
<td>no</td>
</tr>
<tr>
<td>F_4</td>
<td>s_4</td>
<td>$s_1 s_2 s_3 s_4$</td>
<td>n/a</td>
<td>yes</td>
</tr>
<tr>
<td>F_4</td>
<td>s_3</td>
<td>$s_2 s_3 s_1 s_2 s_1 s_3 s_2 s_4 s_3$</td>
<td>n/a</td>
<td>yes</td>
</tr>
<tr>
<td>G_2</td>
<td>s_1</td>
<td>$s_2 s_1, s_1 s_2 s_1, s_2 s_1 s_2 s_1$</td>
<td>n/a</td>
<td>no</td>
</tr>
<tr>
<td>G_2</td>
<td>s_2</td>
<td>$s_1 s_2$</td>
<td>n/a</td>
<td>yes</td>
</tr>
<tr>
<td>G_2</td>
<td>s_2</td>
<td>$s_2 s_1 s_2, s_1 s_2 s_1 s_2$</td>
<td>n/a</td>
<td>no</td>
</tr>
</tbody>
</table>

Here $u_{n,k}$ denotes the maximal length element in $W^S \setminus \{s_1, s_k\} \cap W^S \setminus \{s_1\}$ when W has type B_n or C_n.

If w is a maximal element of W^P, then X_P^w is smooth.
We can use previous theorems to enumerate smooth and rationally smooth Schubert varieties in the complete flag variety G/B in classical types.

The generating series for type A is due to Haiman.

<table>
<thead>
<tr>
<th>n</th>
<th>A</th>
<th>B (smooth)</th>
<th>C (smooth)</th>
<th>B/C (r.s.)</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>88</td>
<td>116</td>
<td>114</td>
<td>142</td>
<td>108</td>
</tr>
<tr>
<td>5</td>
<td>366</td>
<td>490</td>
<td>472</td>
<td>596</td>
<td>490</td>
</tr>
<tr>
<td>6</td>
<td>1552</td>
<td>2094</td>
<td>1988</td>
<td>2530</td>
<td>2164</td>
</tr>
<tr>
<td>7</td>
<td>6652</td>
<td>9014</td>
<td>8480</td>
<td>10842</td>
<td>9474</td>
</tr>
<tr>
<td>8</td>
<td>28696</td>
<td>38988</td>
<td>36474</td>
<td>46766</td>
<td>41374</td>
</tr>
<tr>
<td>9</td>
<td>124310</td>
<td>169184</td>
<td>157720</td>
<td>202594</td>
<td>180614</td>
</tr>
<tr>
<td>10</td>
<td>540040</td>
<td>735846</td>
<td>684404</td>
<td>880210</td>
<td>788676</td>
</tr>
<tr>
<td>11</td>
<td>2350820</td>
<td>3205830</td>
<td>2976994</td>
<td>3832004</td>
<td>3445462</td>
</tr>
</tbody>
</table>
Definition: A parabolic decomposition $w = vu$, $v \in W^P$, $u \in W_P$ is a BP (Billey-Postnikov) decomposition if any of the following are true:

1. u is the maximal length element in $[e, w] \cap W_P$.
2. The Poincaré polynomials $P_w(q) = P_{v}^{P}(q) \cdot P_{u}(q)$.
3. $S(v) \cap W_P$ is contained in the left descent set of u.

Theorem: R-Slofstra (14)

Let W be the Weyl group of G. The parabolic decomposition $w = vu$ is a BP decomposition with respect to P if and only if the projection

$$X^B_w \to X^P_v$$

is an algebraic fibre bundle with fibre isomorphic to X^B_u.

Remarks:

- X^B_w does not have to be rationally smooth.
- The theorem is true for Schubert varieties in G/P.
- The theorem is true for Kac-Moody Schubert varieties.
Existence of Billey-Postnikov decompositions

Definition: A parabolic decomposition $w = vu$ with respect to P is Grassmannian if $S(w) = S(u) + 1$. (Hence G/P is a generalized Grassmannian)

Theorem: Gasharov (98), Billey (98), Billey-Postnikov (05), Oh-Yoo (10)

Let W be a Weyl group of finite type and $w \in W$. If X^B_w is rationally smooth, then either w or w^{-1} has Grassmannian BP decomposition with respect to $J = S(w) \setminus \{s\}$, where s is some leaf of the Dynkin diagram of $S(w)$.

Theorem: R-Slofstra (14)

Let W be a Weyl group of finite type and $w \in W$. If X^B_w is rationally smooth, then w has a Grassmannian BP decomposition $w = vu$ with respect to $J = S(w) \setminus \{s\}$ for some $s \in S(w)$ (s is not necessarily a leaf).
Question: If W is an arbitrary Coxeter, do all rationally smooth elements have nontrivial BP-decompositions?

Partial results:

- Affine type A (Billey-Crites (11)).
- W is a Coxeter group with no commuting relations ($m_{st} \geq 3$) (R-Slofstra (12)).
- W is a right angle Coxeter group (R-Slofstra (12)).

Thank you!