
Context: IPCC Report on Climate Change

NDC contributions and the emissions gap

• To avoid the worst consequences of climate change, the energy chain of the global economy must be drastically decarbonized.

- To avoid the worst consequences of climate change, the energy chain of the global economy must be drastically decarbonized.
- This depends on rapid transitioning from fossil fuels to renewable energy.

- To avoid the worst consequences of climate change, the energy chain of the global economy must be drastically decarbonized.
- This depends on rapid transitioning from fossil fuels to renewable energy.
- Math has done a lot for fossil fuels, e.g., seismic imaging.

- To avoid the worst consequences of climate change, the energy chain of the global economy must be drastically decarbonized.
- This depends on rapid transitioning from fossil fuels to renewable energy.
- Math has done a lot for fossil fuels, e.g., seismic imaging.
- Math has and will continue to do a lot for renewable energy;
 this is the subject of our workshop.

Mathematics

- Mathematics
- Computer Science

- Mathematics
- Computer Science
- Statistics

- Mathematics
- Computer Science
- Statistics
- Applied Mathematics as practiced in Science and Engineering

- Mathematics
- Computer Science
- Statistics
- Applied Mathematics as practiced in Science and Engineering
- Types of math represented at this workshop

- Mathematics
- Computer Science
- Statistics
- Applied Mathematics as practiced in Science and Engineering
- Types of math represented at this workshop
 - ordinary, partial and stochastic differential equations

- Mathematics
- Computer Science
- Statistics
- Applied Mathematics as practiced in Science and Engineering
- Types of math represented at this workshop
 - ordinary, partial and stochastic differential equations
 - modeling, simulation, computation, numerical analysis

- Mathematics
- Computer Science
- Statistics
- Applied Mathematics as practiced in Science and Engineering
- Types of math represented at this workshop
 - ordinary, partial and stochastic differential equations
 - modeling, simulation, computation, numerical analysis
 - discrete optimization, convex optimization

- Mathematics
- Computer Science
- Statistics
- Applied Mathematics as practiced in Science and Engineering
- Types of math represented at this workshop
 - ordinary, partial and stochastic differential equations
 - modeling, simulation, computation, numerical analysis
 - discrete optimization, convex optimization
 - algorithms, machine learning

- Mathematics
- Computer Science
- Statistics
- Applied Mathematics as practiced in Science and Engineering
- Types of math represented at this workshop
 - ordinary, partial and stochastic differential equations
 - modeling, simulation, computation, numerical analysis
 - discrete optimization, convex optimization
 - algorithms, machine learning
 - statistics, probability, stochastic processes

- Mathematics
- Computer Science
- Statistics
- Applied Mathematics as practiced in Science and Engineering
- Types of math represented at this workshop
 - ordinary, partial and stochastic differential equations
 - modeling, simulation, computation, numerical analysis
 - discrete optimization, convex optimization
 - algorithms, machine learning
 - statistics, probability, stochastic processes
 - control theory, geometric mechanics

- Mathematics
- Computer Science
- Statistics
- Applied Mathematics as practiced in Science and Engineering
- Types of math represented at this workshop
 - ordinary, partial and stochastic differential equations
 - modeling, simulation, computation, numerical analysis
 - discrete optimization, convex optimization
 - algorithms, machine learning
 - statistics, probability, stochastic processes
 - control theory, geometric mechanics
 - mathematical finance

- Mathematics
- Computer Science
- Statistics
- Applied Mathematics as practiced in Science and Engineering
- Types of math represented at this workshop
 - ordinary, partial and stochastic differential equations
 - modeling, simulation, computation, numerical analysis
 - discrete optimization, convex optimization
 - algorithms, machine learning
 - statistics, probability, stochastic processes
 - control theory, geometric mechanics
 - mathematical finance
 - fluid mechanics

- Mathematics
- Computer Science
- Statistics
- Applied Mathematics as practiced in Science and Engineering
- Types of math represented at this workshop
 - ordinary, partial and stochastic differential equations
 - modeling, simulation, computation, numerical analysis
 - discrete optimization, convex optimization
 - algorithms, machine learning
 - statistics, probability, stochastic processes
 - control theory, geometric mechanics
 - mathematical finance
 - fluid mechanics
 - what else?

Who is here

	speakers	participants
undergrads	0	5
grads	2	22
postdocs	2	10
math, cs, stat faculty	8	18
engineering faculty	12	15
industry	11	14
government	0	3

Where we are from

Lower Mainland	40
Vancouver Island	10
Alberta	17
Other Canada	6
USA	11
Other	5

collaboration

- collaboration
- collaboration

- collaboration
- collaboration
- collaboration

- collaboration
- collaboration
- collaboration
- new and continued collaboration between

- collaboration
- collaboration
- collaboration
- new and continued collaboration between

- collaboration
- collaboration
- collaboration
- new and continued collaboration between
 - academics in different areas of clean energy

- collaboration
- collaboration
- collaboration
- new and continued collaboration between
 - academics in different areas of clean energy
 - academia, industry, and government

- collaboration
- collaboration
- collaboration
- new and continued collaboration between
 - academics in different areas of clean energy
 - academia, industry, and government
 - novices and experts

- collaboration
- collaboration
- collaboration
- new and continued collaboration between
 - academics in different areas of clean energy
 - academia, industry, and government
 - novices and experts
- Why are you here and what do you hope to get out of this workshop?