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Moser-Trudinger inequality

Let S2 be the 2-dimensional unit sphere and let Jα denote the
nonlinear functional on the Sobolev space H1,2(S2) defined by

Jα(u) =
α
4

∫
S2
|∇u|2 dω+

∫
S2

u dω − ln
∫

S2
eu dω,

where dω denotes Lebesgue measure on S2, normalized so
that

∫
S2 dω = 1.

Moser-Trudinger: For α ≥ 1,

C(α) = inf
{
Jα(u); u ∈ H1(S2)

}
> −∞.

Clearly, C(α) ≤ 0.



Aubin’s inequalities
Aubin had shown that by restricting the functional Jα to the
"Aubin-submanifold" of H1(S2) defined by

M :=

{
u ∈ H1(S2);

∫
S2

eu xj dw = 0 for all 1 ≤ j ≤ 3
}
,

then it is bounded below (resp., coercive) for α ≥ 1
2 (resp.,

α > 1
2 ) i.e.,

inf
u∈M

Jα(u) := A(α) > −∞.

Onofri (later Osgood-Phillips-Sarnak, and Hong): for α ≥ 1

C(1) = A(1) = 0.

that is Jα is non-negative on H1(S2) provided α ≥ 1.
Chang-Yang then showed that for some ε0 > 0,

inf
u∈M

J1−ε0(u) := A(1 − ε0) = 0.

They asked



Main conjecture (Chang and Yang)

1. If α ≥ 1
2 then inf

u∈M
Jα(u) = A(α) = 0.

2. If α < 1
2 then inf

u∈M
Jα(u) = A(α) = −∞.

Known results so far:

(1998) Feldman, Froese, Ghoussoub and Gui (2) holds and (1)
is true for axially symmetric case and α ≥ 16

25

(2000) Gui-Wei and independently by C.S. Lin
True for axially symmetric case, i.e., α ≥ 1

2 .

(2008) Ghoussoub-C.S. Lin
True in general for α ≥ 2

3 .



Conformal invariance

For any conformal transformation ψ of S2, we have:

J1(Tψu) = J1(u) where Tψ(u) = u ◦ ψ+ 1
2 log det |dψ|.

ψ is defined by ψP,t where for P ∈ S2 and t ≥ 1, choose a frame
(e1,e2,e3 = P) then use stereographic coordinates with P at
infinity and denote ψ(z) = ψP,t(z) = tz, where

x ≡ z = cot(
θ
2

)e iφ =
x1 + ix2

1 − x3
.

Conformal transformation on S2 identified with fractional linear
transformations ψ(z) =

αz+β
γz+δ (in SL(2,C)) (αδ − βγ = 1). Then,

1
2

log det |dψ(z)| = 2 log
1 + |z|2

|αz + β|2 + |γz + δ|2
.



Onofri’s Proof for α = 1
1. For any u ∈ H1(S2), there exists φ such that Tφu ∈ M.
2. Since J1 is conformally invariant, then

A(1) := inf
u∈M

J1(u) = inf
u∈H1(S2)

J1(u) := C(1),

3. J1 attains its infimum onM and Euler-Lagrange equation:

∆u + 2

 eu∫
S2 eu dw

− 1

 =

3∑
j=1

αjxjeu on S2.

4. Kazdan-Warner showed that above equation has solutions
only if αj = 0 (no Lagrange multiplier)

5. Conclude by using that the equation

∆u + e2u = 1 on S2

has only trivial solution satisfying the Aubin constraint.
Metrics with prescribed Gaussian curvature!



Metrics with prescribed Gaussian curvature K (x)

If metric g = e2ug0 with Gaussian curvature K , then,

∆u + K(x)e2u = 1 on S2 (1)

where ∆ = ∆g0 is Laplacian related to standard metric g0.

FK (u) =

∫
S2
|∇u|2 dω+ 2

∫
S2

u dω − ln
∫

S2
K(x)e2u dω, (2)

1. When u = 1
2 ln |Jψ| for ψ conformal transformation, then

∆u + e2u = 1 and K = 1, and when K = c, u = 1
2 ln |Jψ|+ ln c is

another non-trivial solution with Fc(u) = ln c.
2. One can show that if u is a local minimum then there is a
solution only if K is constant. Hence, the need to find a saddle.
3. (K ,u) satisfy (1) if and only if (K ◦ ψ,Tψ(u) satisfies (1) for
any conformal transformation.



Determinant of Laplacians

Metric g → Laplacian ∆g → eigenvalues (λg
i )i → Determinant

det ∆g = Πiλ
g
i .

Not so fast! But one can write the determinant as

det ∆g = e−ξ
′(0) where ξ(s) = Σk>0

1
λs

k
for Re(s) > 1.

Ray-Singer-Polyakov gives when g = e2ug0 and equal volume,

ln
det∆g

det∆g0

= −
1

12π

∫
S2

(2u + ∇u|2) dω.

1. Right hand side is invariant under conformal transformation.
2. Onofri’s inequality implies that among all conformal metrics
on S2 with equal volume, ln det ∆g0 is maximum.



Connections to Navier-Stokes equations

∆u − (u · ∇)u = ∇p divu = 0 ∈ on R3

scales under u→ λu(λx).
What are then the solutions that are invariant under such a
scaling?
Explicit examples are the Landau solutions. Anything else?

Sverak (2009): Only −1-homogeneous solutions of the
stationary Navier-Stoke equation on R3 are the Landau
solutions (i.e, axially symmetric and u = 0 if weak and smooth
away from the origin).

Proof: u(x) = v(x) + f(x)x (where v(x) tangent to S2).
After some work, one can show that v = ∇φ and

∆φ+ 2eφ = 2 on S2.



Axially symmetric case

Let θ and ϕ denote the usual angular coordinates on the
sphere, and define x = cos(θ). Axially symmetric functions
depend on x only. For such functions the above conjecture
reduces to the following one-dimensional inequality:

1
2

∫ 1

−1
(1−x2)|g′(x)|2 dx +2

∫ 1

−1
g(x) dx−2 ln

1
2

∫ 1

−1
e2g(x)dx ≥ 0,

for any g on (−1,1) satisfying∫ 1
−1(1 − x2)|g′(x)|2dx < ∞ and

∫ 1
−1 e2g(x)xdx = 0.

Conjecture proved by
(1998) Feldman, Froese, Ghoussoub and Gui (True for α ≥ 16

25 )
(2000) Gui-Wei and independently by Lin (for α ≥ 1

2 ).



When α < 1/2
Consider the functions

g(x) = c ln(1 − x) for 0 < x < 1 − ε
g(x) = c ln(ε) for 1 − ε < x < 1.

extended as even functions to the whole interval (−1,1). It is
clear that g ∈ Mr and a calculation shows that for small ε

Iα(g) = 2αc2
| ln(ε)| − ln

(
−
ε2c+1

2c + 1
+

1
2c + 1

+ ε2c+1
)
+ O(1)

If 2c + 1 < 0, this becomes

Iα(g) = p(c)| ln(ε)|+ O(1),

where p(c) = 2αc2 + 2c + 1. Now suppose α < 1/2. Then the
discriminant of p(c), namely 4 − 8α, is positive. Hence p(c) has
real roots and must be negative for some value of c. For this
value of c, 2c + 1 < p(c) < 0, so Iα(g) tends to −∞ as ε
becomes small.



Proof of FFGG for axially symmetric case and α ≥ 2
3

Step 1: Let G(x) = (1− x2)g′(x) where g is any critical point of

Iα(g) = α

∫ 1

−1
(1−x2)|g′(x)|2 dx+2

∫ 1

−1
g(x) dx−2 ln

1
2

∫ 1

−1
e2g(x)dx

restricted toMr . Then

(?)


αG′ − 1 + 2

λe2g = 0
(1 − x2)G′′ + 2

αG − 2GG′ = 0
G(−1) = G(1) = 0.

Step 2: Integrate (?) on (−1,1), plus a few integration by parts
yield:

(
2
α
− 2)

∫ 1

−1
G(x) dx = 0

G is then orthogonal to the first eigenspace of d
dx ((1 − x2) d

dx )
on H1(−1,1). Since the second eigenvalue is 2, we have

2
∫ 1

−1
|G(x)|2 ≤

∫ 1

−1
(1 − x2)|G′(x)|2 dx .



Proof continued

We have so far

2
∫ 1

−1
|G(x)|2 ≤

∫ 1

−1
(1 − x2)|G′(x)|2 dx . (1)

Step 3: Multiply equation by G and integrate by parts twice,
we get that∫ 1

−1
(1 − x2)|G′(x)|2 dx = (

2
α
− 1)

∫ 1

−1
|G(x)|2. (2)

So, by comparing (1) and (2), we get that either α ≤ 2/3 or that
G and hence g is identically 0.

Gui-Wei’s proof for α ≥ 1
2 is an iteration of this process.



Connection to other conjectures
Conjecture 1: Suppose 1

2 ≤ α < 1, then any solution of

α∆u + e2u
− 1 = 0 in S2 (?)

is identically 0 on S2.
Let Π denote the stereographic projection S2

→ R2 with
respect to the North pole N = (0,0,1): Π(x) :=

(
x1

1−x3
, x2

1−x3

)
.

Suppose u is a solution of (?) and set

ũ(y) := u(Π−1(y)) for y ∈ R2.

Then ũ satisfies

∆ũ +
8π
α

J(y)
(
eũ
−

1
4π

)
= 0 in R2,

where J(y) :=
(

2
1+|y |2

)2
is the Jacobian of Π. By letting

v(y) := ũ(y) +
1
α

log
(
(1 + |y |2)−2

)
+ log(

32π
α

) for y ∈ R2,

we have that v satisfies



∆v + (1 + |y |2)lev = 0 in R2, (3)

where l = 2( 1
α − 1).

Note that equation (3) always has a special axially symmetric
solution, namely

v∗(y) = −
2
α

log(1 + |y |2) + log(
32π
α

) for y ∈ R2, (4)

Moreover, The Pohozaev idendity yields that for any solution v
of (3) we have

4 < βl(v) :=
1

2π

∫
R2

(1 + |y |2)levdy < 4(1 + l), (5)

Open question that would imply Conjecture (1) is:

Conjecture 2: Is v∗ the only solution of (3) whenever l > 0?
Answer should be: YES if l ≤ 2 and NO if l > 2.
We now know that it is YES for l ≤ 1 (i.e, α ≥ 2

3 )



State of conjecture
• It is indeed the case if ` < 0 (i.e. α > 1), since then one can
use method of moving planes to show that v(y) is radially
symmetric with respect to the origin, and then conclude that
u(x) is axially symmetric with any line passing through the
origin. Thus u(x) must be a constant function on S2, hence
u = 0, and Jα ≥ 0 onM. One recovers Onofri’s inequality.

• When l > 0 (α < 1), the method of moving planes fails and it
is still an open problem whether any solution of (3) is equal to
v∗ or not. The following uniqueness theorem reduces however
the problem to whether any solution of (3) is radially symmetric.

Theorem (B): Suppose l > 0 and vi(y) = vi(|y |), i = 1,2, are
two solutions of (3) satisfying βl(v1) = βl(v2), then v1 = v2
under one of the following conditions:

l ≤ 1 or l > 1 and 2l < βl(vi) < 2(2 + l) for i = 1,2.



In order to show how Theorem B implies the axially symmetric
case, assume u is a solution of (?) that is axially symmetric
with respect to some direction. By rotating, the direction can be
assumed to be (0,0,1). Use again the stereographic projection
and set v as in (14) to get v(y) = − 4

α log |y |+ O(1),
1

2π

∫
R2(1 + |y |2)levdy = 4 + 2l.

(6)

If l ≤ 1, i.e., α ≥ 2
3 , then v = v∗ by (i) of Theorem B, and then

u ≡ 0. If l > 1, then by noting that

2l < 4 + 2l = βl(v) < 4 + 4l,

we deduce that v = v∗ by (ii) of Theorem B, which again means
that u ≡ 0.



Key lemma

Lemma ( Bandle): Let Ω be a simply connected domain in R2,
and suppose g ∈ C2(Ω) satisfies ∆g + eg > 0 in Ω and∫

Ω
egdy ≤ 8π.

Consider an open set ω ⊂ Ω such that λ1,g(ω) ≤ 0, where
λ1,g(ω) is the first eigenvalue of the operator ∆ + eg on H1

0(ω).
Then, we necessarily have∫

ω
egdy > 4π.

Lemma was first proved in Bandle by using the classical Bol
inequality. The strict inequality is due to the fact that
∆g + eg > 0 in Ω.



Bol-Alexandroff inequality

Lemma 1: ( Nehari) Let σ be subharmonic on Ω ⊂ R2, then

(

∫
∂Ω

e
σ
2 )2
≥ 4π

∫
Ω

eσ.

Lemma 2: ( Bol-Alexandroff) Let Ω be a simply connected
domain in R2, and suppose u ∈ C2(Ω) satisfies

∆u + eu > 0 in Ω and
∫

Ω

eudy ≤ 8π.

then for any open set ω ⊂ Ω of class C1, we have∫
∂ω

e
u
2 ≥

1
2

∫
ω

eudy
(
8π −

∫
ω

eudy
)
.



Proof of Ghoussoub-Lin
Theorem: Suppose 2

3 ≤ α < 1, then any solution of

α∆u + e2u
− 1 = 0 in S2, (?)

is identically 0 on S2.
Sketch: Suppose u is a solution of (?). Let ξ0 be a critical
point of u, that we can suppose (0,0,−1). Use stereographic
projection Π and let
v(y) := u(Π−1(x)) − 2

α log(1 + |y |2) + log(32π
α ).

∆v + (1 + |y |2)lev = 0 in R2 and ∇v(0) = 0.

The function ϕ(y) := y2
∂v
∂y1
− y1

∂v
∂y2

, satisfies

∆ϕ+ (1 + |y |2)levϕ = 0 in R2.

If ϕ . 0, then ϕ(y) = Q(y)+higher order terms for |y | � 1,
where Q(y) is a quadratic polynomial of degree m with m ≥ 2,
that is also a harmonic function, i.e., ∆Q = 0. Thus, the nodal
line {y |ϕ(y) = 0} divides a small neighborhood of the origin
into at least four regions.



Globally, R2 is therefore divided by the nodal line {y |ϕ(y) = 0}
into at least 3 regions, i.e.,

R2
\ {y |ϕ(y) = 0} =

3⋃
j=1

Ωj .

In each component Ωj , the first eigenvalue of ∆ + (1 + |y |2)lev

being equal to 0. Let g := log
(
(1 + |y |2)lev

)
so that

∆g + eg > 0 in R2,

The lemma then implies that for each j = 1,2,3,∫
Ωj

egdy =

∫
Ωj

(1 + |y |2)levdy > 4π.

It follows that

8π
α

=

∫
R2

(1 + |y |2)levdy =

3∑
j=1

∫
Ωj

(1 + |y |2)levdy > 12π,

which is a contradiction if we had assumed that α ≥ 2
3 . Thus we

have ϕ(y) = 0, i.e., v(y) is axially symmetric, and u ≡ 0.



Final remarks

If we further assume that the antipodal of ξ0 is also a critical

point of u, then R2
\ {y |ϕ(y) = 0} =

m⋃
j=1

Ωj , where m ≥ 4. The

lemma then yields

8π
α

=

∫
R2

(1 + |y |2)levdy ≥
m∑

j=1

∫
Ωj

(1 + |y |2)levdy > 4mπ ≥ 16π,

which is a contradiction whenever α ≥ 1
2 . By Theorem A, we

have again that u ≡ 0.
For example, if u is even on S2 (i.e., u(z) = u(−z) for all
z ∈ S2), then the main theorem holds for α ≥ 1

2 .


