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Homo Economicus

Axiomatic approach

Lotteries space X (for instance Rm � ∆m)
x = (x1,π1; � � � ; xn,πn)
� preference relation on X

Theorem (VNM)

If � is complete, transitive, Archimedean and satis�es

x � y ) αx + (1� α)r � αy + (1� α)r , 8r , 8α 2 [0, 1]
(Independence)

then x � y () E [u(x)] � E [u(y)] with u : R ! R
non-decreasing and concave.
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Subjective probabilities

Random variables space (payo¤s space) X

� preference relation on X

Theorem (Savage)

If � satis�es the rationality axioms then
x � y () ∑m

j=1 πju(x j ) � ∑m
j=1 πju(y j ) for some u : R ! R

non-decreasing and concave and some π 2 ∆m .
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Pareto optimum

n agents, i = 1, . . . , n
ui , i = 1, . . . , n

Qi =
�

πji

�
, i = 1, . . . , n

Ui (x) = EQi [ui (x)] = E [Miui (x)]

total endowment x

De�nition

An allocation (x1, � � � , xn) such that ∑n
i=1 xi = x is Pareto

optimal if there is no (y1, � � � , yn) such that ∑n
i=1 yi = x and

Ui (yi ) � Ui (xi ), i = 1, . . . , n, and Ui (yj ) > Ui (xj ) for some j .
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Characterization of Pareto optima

Theorem

(x�1, � � � , x�n ) is a PO i¤ 9 (λi ) 2 ∆n s.t.
(x�1, � � � , x�n ) = argmax∑n

i=1 xi=x ∑n
i=1 λiU(xi ).

For given weights (λi ) 2 ∆n, the social welfare value function
is de�ned by

U(x) = max
∑n
i=1 xi=x

n

∑
i=1

λiUi (xi ) =
n

∑
i=1

λiUi (x�i )
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Time preferences

t = 0, 1, � � � ,T

ρi , i = 1, � � � , n
D it = exp(�ρi t)

M i
t =

dQi
dP

���
Ft

Ui (x(0), x(1), � � � , x(T )) = ∑T
t=0 exp(�ρi t)Ui (x(t)) =

∑T
t=0 E

�
M i
tD

i
tui (x(t))

�
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Behavioral features

Hyperbolic discounting (Loewenstein and Prelec): ρi is not
constant and decreases with time

Prospect Theory (Kahneman and Tversky): Probabilities
depend upon the prospect ∑m

j=1 w(π
j )u(x j )

Cumulative Prospect Theory (Tversky and Kahneman), if
x1 < x2 < � � � < xn

m

∑
j=1
w j (x)u(x j )

with

w j (x) = w(pj + � � �+ pn)� w(pj+1 + � � �+ pn).
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Parametric and non-parametric calibrations
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Discriminability
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Attractivity
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Representative agent

All agents have the same CRRA utility function

u(s) = s1�
1
η

1� 1η
.

The number of agents can be �nite or in�nite

Theorem

If the characteristics
�
M i
t ,D

i
t ,λi

�
i2I are independent, then

U(x) = E [MtDtu(x)]

with

Mt =

 
1
jI j ∑i2I

�
M i
t

�η

! 1
η

and Dt =

 
1
jI j ∑i2I

�
D it
�η

! 1
η

.
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Our aim

We start from a standard model of Pareto optimality

We analyze the behavioral properties of the representative
agent

It can be seen as a model of individual decision making if
RA=individual and agents=processes
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Distribution of x for the representative agent

We denote by Q the representative agent probability

Theorem

ft =
�
1
jI j ∑i2I

�
f it
�η
� 1

η

If η = 1, EQ [x ] = 1
jI j ∑i2I E

Qi [x ] and EQ [x ] = EP [x ] if
no bias

If η = 1, VarQ [x ] = VarP [x ] + Vari
�
EQi [x ]

�
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The log-normal case

log x � N ((µ, σ2)

log x �Qi N (µi , σ2)
If µi � µ, i is pessimistic and if µi � µ, i is optimistic

Theorem

1 If agents�beliefs are heterogeneous enough, the
distribution of log x is bimodal.

2 More variance, excess kurtosis and same mean (if no bias),
3 VarQ [log x ] increases with the level or risk tolerance η.
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The bimodal representative agent distribution
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Properties of the representative agent�s belief

Theorem
If I is made of both optimistic and pessimistic agents.

1 The representative agent can neither be (everywhere)
optimistic, nor (everywhere) pessimistic

2 The representative agent is optimistic for �good states of
the world�and pessimistic for �bad states of the world�

3 The representative agent behaves like the more pessimistic
individual for low values and behaves like the more
optimistic individual for high values

4 The representative agent acts as if he had fear (need for
security) for very bad events and hope (desire for
potential) for very good events (SP/A Theory, Lopes)

5 The transformation w is inverse S-shaped (Abdellaoui,
Gonzalez and Wu, Prelec)
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The transformation w
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Prelec�s function
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Shifts

Theorem
If all the agents have log-utility functions then a left shift on the
distribution of (µi ) increases attractiveness and a symmetric
spread on the distribution of (µi ) decreases discriminability.
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Time preference rates

Dt =
�

∑i2I
1
jI j
�
D it
�η
� 1

η
where D it � exp (�ρi t) .

Representative agent marginal and average time preference
rates ρm and ρa

ρDm (t) = �D
0
t

Dt

ρDa (t) = �1
t
logDt
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Behavioral properties of the rep. agent�s rates

Theorem
ρm and ρa are given by

ρDa (t) = �1
t
log

"
1
N

N

∑
i=1
exp (�ηρi t)

#1/η

ρDm (t) =
N

∑
i=1

exp (�ηρi t)

∑N
i=1 exp (�ηρi t)

ρi

They are lower than the average of the time preference rates

ρDm (t) <
1
N

N

∑
i=1

ρi and ρDa (t) <
1
N

N

∑
i=1

ρi

�Behavioral Properties� (Lengwiller, Gollier-Zeckhauser): ρm
and ρa decrease with time and
limt!+∞ ρDa (t) = limt!+∞ ρDm (t) = inf i (ρi ) .
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Speci�c Distributions

If we assume a Gamma distribution with mean m and variance
v for the ρi s we obtain (hyperbolic discounting)

ρDm (t) =
m2

m+ ηv2t
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FSD and SSD shifts

A FSD (resp. SSD) dominated shift on the distribution fρ of
individual marginal time preference rates decreases the
representative agent average time preference rate ρDa .
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MLR and PD shifts

A MLR (resp. PD) dominated shift on the distribution fρ of
individual marginal time preference rates decreases the
representative agent average time preference rate ρDm .
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Optimism and pessimism

De�nition

An agent is said to be optimistic (resp. pessimistic) if fif is
nondecreasing . Agent i is said to be more optimistic than
agent j and we denote by fi < fj if and only if fifj is
nondecreasing.

The probability weighting function gi transforms the objective
decumulative distribution function F into the agent�s subjective
decumulative distribution function Fi , i.e. Fi = gi � F .

fi
f is nondecreasing (resp. nonincreasing) if and only if gi is
convex (resp. concave). (Diecidue and Wakker, 2001) in a
RDEU framework.

A MLR dominated shift for a given distribution reduces
the mean.
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Behavioral properties

Theorem
If there are at least one optimistic agent and one pessimistic
agent

1 The representative agent can neither be optimistic, nor
pessimistic.

2 The representative agent overestimates the weight of the
�good states of the world�as well as the weight of �bad
states of the world�

3 The representative agent acts as if he had fear (need for
security) for very bad events and hope (desire for
potential) for very good events

4 fM �∞ f maxopt and fM ��∞ f maxpess .

5 The probability weighting function is concave for small
probabilities, and convex for high probabilities.
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Shifts

Theorem
1 If log-utilities and if agent�s density functions are totally
ordered with respect to the FSD order then a FSD
dominated shift in agents�density functions distribution
leads to a less attractive density function for the
representative agent.

2 If the set (fi )i2I of agent�s density functions is totally
ordered with respect to the MLR order then a MLR
dominated shift in agents�density functions distribution
leads to a more pessimistic representative agent.
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Interpretation

Individual behavior can be represented as the aggregate
behavior of a collection of individuals

Is there a way to interpret the brain as a collection of
processes?

Each process has its own belief and its own time
preference rate (level of impatience)

A central planner (the cortex?) attributes parts of the
prospect x to the di¤erent processes for evaluation

The attribution is made in order to maximize the total
utility (specialization of the processes)

Other models in the literature (Carillo-Brocas):
asymmetric information
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