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Decision @ X = (X1,7T1, ;X”,TL’”)
Theory )
@ ~ preference relation on X

Theorem (VNM)

If = is complete, transitive, Archimedean and satisfies

xry=ax+(1—a)r=ay+(1—a)r, Vr,Va € [0, 1]

(Independence)
then x = y <= E [u(x)] > E [u(y)] withu: R — R
non-decreasing and concave.
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Decision e Random variables space (payoffs space) X
fheery e = preference relation on X

Theorem (Savage)

If = satisfies the rationality axioms then
xzy<s=YyLimwul¥)>Y" wWu(y’) forsomeu: R — R
non-decreasing and concave and some 7w € A,.
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. nagents, i=1,...

uj, i = 1,...,n

Decision H

Theory Qi: <7‘[JI.)’I.:]_,...,n

Ui(x) = E9 [u(x)] = E [Myu;(x)]

total endowment x

Definition

An allocation (x, - -+, x,) such that Y7 ; x; = x is Pareto
optimal if there is no (y;, « -, y,) such that Y7 ; y; = x and
Ui(yi) > Ui(xi),i =1,...,n, and Uj(yj) > Uj(x;j) for some j.
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’ xy) isa PO iff3(Aj) € A, s.t.
(Xl, e 'X:) = argmaxyn  —x 27:1 /\iU(Xi)'

For given weights (A;) € A,, the social welfare value function
is defined by

U(x) = max ZAU Z)\iUi(ka)

E/ 1Xi=X i —1 =1
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et=20,1.---,T

@ p,i=1---,n

Decision
Theory

o D] = exp(—p;t)

i dQ
° M= g

Fi
o Ui(x(0),x(1), -~ . x(T)) = Lo exp(—p;t) Ui(x(t)) =
Yio E [M{D]ui(x(t))]



Behavioral features

Behavioral
biases and

representative @ Hyperbolic discounting (Loewenstein and Prelec): p; is not
agent !
constant and decreases with time

Elyes Jouin

Decision
Theory

iwvww>
with

W () = wipy + -+ pn) = wippsr + 4 pa).



Behavioral features

Behavioral
biases and

represenative @ Hyperbolic discounting (Loewenstein and Prelec): p; is not
constant and decreases with time

Elyes Jouin
i @ Prospect Theory (Kahneman and Tversky): Probabilities
Theory depend upon the prospect Y"1 w(7t/ )u(x’)

iwvww>
with

W () = wipy + -+ pn) = wippsr + 4 pa).



Behavioral features

Behavioral
biases and

represenative @ Hyperbolic discounting (Loewenstein and Prelec): p; is not
constant and decreases with time

Elyes Jouin

. @ Prospect Theory (Kahneman and Tvgrsky).: Probabilities

Theory depend upon the prospect Y"1 w(7t/ )u(x’)

e Cumulative Prospect Theory (Tversky and Kahneman), if
X1 < Xo < --- < Xp

2 W (x)u(x)
with

W (x) = w(pj+ -+ pa) —w(pjr1+---+pn).
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Representative agent
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representative @ All agents have the same CRRA utility function
agent 17;
Ui
Elyés Jouini U(S) = Slfl -
Decision @ The number of agents can be finite or infinite

Theory

If the characteristics (M{ , D{, )\,-)I. ) are independent, then

U(x) = E [M;D;u(x)]

with

M, = (ﬁ_el(/w{)”y and D; = <%;( 0 )5
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Theory @ We start from a standard model of Pareto optimality

@ We analyze the behavioral properties of the representative
agent

@ It can be seen as a model of individual decision making if
RA=individual and agents=processes
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Sy Jeuiis We denote by @ the representative agent probability
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Theory

1
1

o= (B Tier (5)")

o lfy=1 EQ[x] = ﬁZie/ E% [x] and EQ [x] = E [x] if
no bias
o If y =1, Var@ [x] = Var” [x] + Var; [E¥ [x]]
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Elyes Jouini (] |0gX ~ N((]/l, 0'2)
o logx ~q, N(u;,0?)

he o If u; < u,iis pessimistic and if u; > u, i is optimistic
log-normal

Q If agents’ beliefs are heterogeneous enough, the
distribution of log x is bimodal.

@ More variance, excess kurtosis and same mean (if no bias),

@ Var® [log x] increases with the level or risk tolerance 1.
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@ The representative agent can neither be (everywhere)
optimistic, nor (everywhere) pessimistic

The @ The representative agent is optimistic for “good states of

e the world” and pessimistic for “bad states of the world”

© The representative agent behaves like the more pessimistic
individual for low values and behaves like the more
optimistic individual for high values

© The representative agent acts as if he had fear (need for
security) for very bad events and hope (desire for
potential) for very good events (SP/A Theory, Lopes)

© The transformation w is inverse S-shaped (Abdellaoui,
Gonzalez and Wu, Prelec)
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e e If all the agents have log-utility functions then a left shift on the

distribution of (j;) increases attractiveness and a symmetric
spread on the distribution of (y;) decreases discriminability.
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1
e D; = (2,.6, ﬁ (D{)”) " where D] = exp (—p;t).
@ Representative agent marginal and average time preference
rates p,, and p,

Ti
pr‘er?eerence pg’ ( t) - —_—

rates
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1 G
P (t) = —;Iog[ Zexp —1p;t ]

N
D exp (—1p;t)

ime pm (t) = pi
;Jrreference I:Z]. ZINZI eXp (_nplt)

rates

They are lower than the average of the time preference rates

D 1 ¢ D 1 ¢
om (8) < opj and 7 (8) < ) p;
i=1 i=1
“Behavioral Properties” (Lengwiller, Gollier-Zeckhauser): p,.
and p, decrease with time and

D 7 .\ 2. nD 7 .\ - o, N




Specific Distributions

Behavioral If we assume a Gamma distribution with mean m and variance

biases and

revesencative S for the p;s we obtain (hyperbolic discounting)
2
Elyés Jouin D m
t) = ——
om (1) m+nv2t

Time
preference
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FSD and SSD shifts

Behavioral

Behaviora A FSD (resp. SSD) dominated shift on the distribution f, of
representative individual marginal time preference rates decreases the

agent ) .
e representative agent average time preference rate pf.
es Jouin
y 1
joo
0.7
Time
preference Fiouse 1
rates , 4([_[ et *HL o
0.2 P \\\
e N

Fioure 3



MLR and PD shifts
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nondecreasing . Agent / is said to be more optimistic than
agent j and we denote by f; = f; if and only if % is

J
nondecreasing.
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The probability weighting function g; transforms the objective
decumulative distribution function F into the agent's subjective
decumulative distribution function F;, i.e. F; = gjo F.

More general
distributions

@ 7 is nondecreasing (resp. nonincreasing) if and only if g; is
convex (resp. concave). (Diecidue and Wakker, 2001) in a
RDEU framework.

@ A MLR dominated shift for a given distribution reduces

the mean.
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Behavioral properties
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representative 5 o a0 5 o .o
If there are at least one optimistic agent and one pessimistic
agent

© The representative agent can neither be optimistic, nor
pessimistic.

@ The representative agent overestimates the weight of the
“good states of the world” as well as the weight of “bad
states of the world”

More general © The representative agent acts as if he had fear (need for
security) for very bad events and hope (desire for
potential) for very good events

Q i ~oo F0* and fiy ~_co FI3.

© The probability weighting function is concave for small
probabilities, and convex for high probabilities.




Shifts

Behavioral
biases and
representative
agent

© If log-utilities and if agent’s density functions are totally
ordered with respect to the FSD order then a FSD
dominated shift in agents’ density functions distribution
leads to a less attractive density function for the
representative agent.

More general
distributions




Shifts

Behavioral
biases and
representative
agent

s Jaiiig Theorem

© If log-utilities and if agent’s density functions are totally
ordered with respect to the FSD order then a FSD
dominated shift in agents’ density functions distribution
leads to a less attractive density function for the
representative agent.

Vore genera Q If the set (f;),., of agent’s density functions is totally
distributions ordered with respect to the MLR order then a MLR
dominated shift in agents’ density functions distribution
leads to a more pessimistic representative agent.
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@ Is there a way to interpret the brain as a collection of
processes?

@ Each process has its own belief and its own time
preference rate (level of impatience)

@ A central planner (the cortex?) attributes parts of the
prospect x to the different processes for evaluation

@ The attribution is made in order to maximize the total
utility (specialization of the processes)

Interpretation

@ Other models in the literature (Carillo-Brocas):
asymmetric information
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