Behavioral biases and representative agent (or the brain as a central planner with heterogeneous doers)

Elyès Jouini

PIMS, 2008
Axiomatic approach

- Lotteries space X (for instance $R^m \times \Delta_m$)
- $x = (x^1, \pi^1; \cdots; x^n, \pi^n)$
- \succeq preference relation on X

Theorem (VNM)

If \succeq is complete, transitive, Archimedean and satisfies

$$x \succeq y \implies \alpha x + (1 - \alpha) r \succeq \alpha y + (1 - \alpha) r, \quad \forall r, \forall \alpha \in [0, 1]$$

(Independence)

then $x \succeq y \iff E[u(x)] \geq E[u(y)]$ with $u : R \rightarrow R$ non-decreasing and concave.
Subjective probabilities

- Random variables space (payoffs space) X
- \succeq preference relation on X

Theorem (Savage)

If \succeq satisfies the rationality axioms then

$$x \succeq y \iff \sum_{j=1}^{m} \pi^j u(x^j) \geq \sum_{j=1}^{m} \pi^j u(y^j)$$

for some $u : R \rightarrow R$ non-decreasing and concave and some $\pi \in \Delta_m$.

Subjective probabilities
Pareto optimum

- n agents, $i = 1, \ldots, n$
- u_i, $i = 1, \ldots, n$
- $Q_i = \left(\pi_i^j \right)$, $i = 1, \ldots, n$
- $U_i(x) = E^{Q_i} [u_i(x)] = E [M_i u_i(x)]$
- total endowment x

Definition

An allocation (x_1, \cdots, x_n) such that $\sum_{i=1}^{n} x_i = x$ is Pareto optimal if there is no (y_1, \cdots, y_n) such that $\sum_{i=1}^{n} y_i = x$ and $U_i(y_i) \geq U_i(x_i), i = 1, \ldots, n$, and $U_i(y_j) > U_i(x_j)$ for some j.
Characterization of Pareto optima

Theorem

\((x_1^*, \ldots, x_n^*)\) is a PO iff \(\exists (\lambda_i) \in \Delta_n \text{ s.t.} \)
\[(x_1^*, \ldots, x_n^*) = \arg \max \sum_{i=1}^n x_i = x \sum_{i=1}^n \lambda_i U(x_i).\]

For given weights \((\lambda_i) \in \Delta_n\), the social welfare value function is defined by

\[U(x) = \max_{\sum_{i=1}^n x_i = x} \sum_{i=1}^n \lambda_i U_i(x_i) = \sum_{i=1}^n \lambda_i U_i(x_i^*).\]
Time preferences

\[t = 0, 1, \ldots, T \]
Time preferences

- $t = 0, 1, \ldots, T$
- $\rho_i, i = 1, \ldots, n$
Time preferences

- $t = 0, 1, \ldots, T$
- $\rho_i, \ i = 1, \ldots, n$
- $D^i_t = \exp(-\rho_i t)$
Time preferences

- \(t = 0, 1, \ldots, T \)
- \(\rho_i, \ i = 1, \ldots, n \)
- \(D_t^i = \exp(-\rho_i t) \)
- \(M_t^i = \left. \frac{dQ_i}{dP} \right|_{F_t} \)
Time preferences

- \(t = 0, 1, \ldots, T \)
- \(\rho_i, \ i = 1, \ldots, n \)
- \(D_t^i = \exp(-\rho_i t) \)
- \(M_t^i = \left. \frac{dQ_i}{dP} \right|_{F_t} \)
- \(U_i(x(0), x(1), \ldots, x(T)) = \sum_{t=0}^{T} \exp(-\rho_i t) U_i(x(t)) = \sum_{t=0}^{T} E \left[M_t^i D_t^i u_i(x(t)) \right] \)
Behavioral features

- Hyperbolic discounting (Loewenstein and Prelec): ρ_i is not constant and decreases with time

\[
\sum_{j=1}^{m} w^j(x) u(x^j)
\]

with

\[
w^j(x) = w(p_j + \cdots + p_n) - w(p_{j+1} + \cdots + p_n).
\]
Behavioral features

- Hyperbolic discounting (Loewenstein and Prelec): ρ_i is not constant and decreases with time.
- Prospect Theory (Kahneman and Tversky): Probabilities depend upon the prospect $\sum_{j=1}^{m} w(\pi^j)u(x^j)$.

$$
\sum_{j=1}^{m} w^j(x)u(x^j)
$$

with

$$
w^j(x) = w(p_j + \cdots + p_n) - w(p_{j+1} + \cdots + p_n).
$$
Behavioral features

- Hyperbolic discounting (Loewenstein and Prelec): ρ_i is not constant and decreases with time
- Prospect Theory (Kahneman and Tversky): Probabilities depend upon the prospect $\sum_{j=1}^{m} w(\pi^j)u(x^j)$
- Cumulative Prospect Theory (Tversky and Kahneman), if $x_1 < x_2 < \cdots < x_n$

$$\sum_{j=1}^{m} w^j(x)u(x^j)$$

with

$$w^j(x) = w(p_j + \cdots + p_n) - w(p_{j+1} + \cdots + p_n).$$
Parametric and non-parametric calibrations
Discriminability

Behavioral biases and representative agent
Elyès Jouini
Decision Theory
The log-normal case
Time preference rates
More general distributions
Interpretation

Figure:

\[w(p) \]

[Graph showing discriminability with a logarithmic scale on the x-axis and a linear scale on the y-axis, with values ranging from 0 to 1.]
Behavioral biases and representative agent
Elyès Jouini

Decision Theory
The log-normal case
Time preference rates
More general distributions
Interpretation

Attractivity

Figure:
Representative agent

- All agents have the same CRRA utility function
 \[u(s) = \frac{s^{1-\frac{1}{\eta}}}{1-\frac{1}{\eta}}. \]

- The number of agents can be finite or infinite

Theorem

If the characteristics \((M^i_t, D^i_t, \lambda_i)_{i \in I}\) are independent, then

\[U(x) = E\left[M_t D_t u(x) \right] \]

with

\[M_t = \left(\frac{1}{|I|} \sum_{i \in I} (M^i_t)^\eta \right)^{\frac{1}{\eta}} \quad \text{and} \quad D_t = \left(\frac{1}{|I|} \sum_{i \in I} (D^i_t)^\eta \right)^{\frac{1}{\eta}}. \]
Our aim

- We start from a standard model of Pareto optimality
Our aim

- We start from a standard model of Pareto optimality
- We analyze the behavioral properties of the representative agent
Our aim

- We start from a standard model of Pareto optimality
- We analyze the behavioral properties of the representative agent
- It can be seen as a model of individual decision making if RA=individual and agents=processes
We denote by Q the representative agent probability

Theorem

$$f_t = \left(\frac{1}{|I|} \sum_{i \in I} (f_t^i)^\eta \right)^{\frac{1}{\eta}}$$

- If $\eta = 1$, $E^Q [x] = \frac{1}{|I|} \sum_{i \in I} E^{Q_i} [x]$ and $E^Q [x] = E^P [x]$ if no bias
We denote by Q the representative agent probability

Theorem

$$f_t = \left(\frac{1}{|I|} \sum_{i \in I} (f^i_t) \eta \right)^{\frac{1}{\eta}}$$

- If $\eta = 1$, $E^Q [x] = \frac{1}{|I|} \sum_{i \in I} E^{Q_i} [x]$ and $E^Q [x] = E^P [x]$ if no bias
- If $\eta = 1$, $\text{Var}^Q [x] = \text{Var}^P [x] + \text{Var}_i [E^{Q_i} [x]]$
The log-normal case

- \(\log x \sim \mathcal{N}(\mu, \sigma^2) \)

Theorem

If agents' beliefs are heterogeneous enough, the distribution of \(\log x \) is bimodal.

1. More variance, excess kurtosis and same mean (if no bias),
2. \(\text{Var} \log x \) increases with the level of risk tolerance \(\eta \).
The log-normal case

- $\log x \sim \mathcal{N}(\mu, \sigma^2)$
- $\log x \sim_{Q_i} \mathcal{N}(\mu_i, \sigma^2)$

Theorem

If agents' beliefs are heterogeneous enough, the distribution of $\log x$ is bimodal.

More variance, excess kurtosis and same mean (if no bias),

$\text{Var}_{Q_i}[\log x]$ increases with the level of risk tolerance η.

The log-normal case
The log-normal case

- $\log x \sim \mathcal{N}(\mu, \sigma^2)$
- $\log x \sim Q_i \mathcal{N}(\mu_i, \sigma^2)$
- If $\mu_i \leq \mu$, i is pessimistic and if $\mu_i \geq \mu$, i is optimistic

Theorem

If agents' beliefs are heterogeneous enough, the distribution of $\log x$ is bimodal.

- More variance, excess kurtosis and same mean (if no bias),
- $\text{Var}(Q_i \log x)$ increases with the level or risk tolerance η.
The log-normal case

- \(\log x \sim \mathcal{N}(\mu, \sigma^2) \)
- \(\log x \sim Q_i \mathcal{N}(\mu_i, \sigma^2) \)
- If \(\mu_i \leq \mu \), \(i \) is pessimistic and if \(\mu_i \geq \mu \), \(i \) is optimistic

Theorem

1. *If agents’ beliefs are heterogeneous enough, the distribution of \(\log x \) is bimodal.*
The log-normal case

- $\log x \sim \mathcal{N}((\mu, \sigma^2))$
- $\log x \sim Q_i \mathcal{N}(\mu_i, \sigma^2)$
- If $\mu_i \leq \mu$, i is pessimistic and if $\mu_i \geq \mu$, i is optimistic

Theorem

1. *If agents’ beliefs are heterogeneous enough, the distribution of $\log x$ is bimodal.*
2. *More variance, excess kurtosis and same mean (if no bias),*
The log-normal case

- \(\log x \sim \mathcal{N}((\mu, \sigma^2)) \)
- \(\log x \sim Q_i \mathcal{N}(\mu_i, \sigma^2) \)
- If \(\mu_i \leq \mu \), \(i \) is pessimistic and if \(\mu_i \geq \mu \), \(i \) is optimistic

Theorem

1. If agents’ beliefs are heterogeneous enough, the distribution of \(\log x \) is bimodal.
2. More variance, excess kurtosis and same mean (if no bias),
3. \(\text{Var}^Q [\log x] \) increases with the level or risk tolerance \(\eta \).
The bimodal representative agent distribution
Properties of the representative agent’s belief

Theorem

If I is made of both optimistic and pessimistic agents.

1. *The representative agent can neither be (everywhere) optimistic, nor (everywhere) pessimistic*
Properties of the representative agent’s belief

Theorem

If I is made of both optimistic and pessimistic agents.

1. *The representative agent can neither be (everywhere) optimistic, nor (everywhere) pessimistic*
2. *The representative agent is optimistic for “good states of the world” and pessimistic for “bad states of the world”*
Properties of the representative agent’s belief

Theorem

If I is made of both optimistic and pessimistic agents.

1. *The representative agent can neither be (everywhere) optimistic, nor (everywhere) pessimistic*

2. *The representative agent is optimistic for “good states of the world” and pessimistic for “bad states of the world”*

3. *The representative agent behaves like the more pessimistic individual for low values and behaves like the more optimistic individual for high values*
Properties of the representative agent’s belief

Theorem

If I is made of both optimistic and pessimistic agents.

1. *The representative agent can neither be (everywhere) optimistic, nor (everywhere) pessimistic*
2. *The representative agent is optimistic for “good states of the world” and pessimistic for “bad states of the world”*
3. *The representative agent behaves like the more pessimistic individual for low values and behaves like the more optimistic individual for high values*
4. *The representative agent acts as if he had fear (need for security) for very bad events and hope (desire for potential) for very good events (SP/A Theory, Lopes)*
Properties of the representative agent’s belief

Theorem

If I is made of both optimistic and pessimistic agents.

1. The representative agent can neither be (everywhere) optimistic, nor (everywhere) pessimistic
2. The representative agent is optimistic for “good states of the world” and pessimistic for “bad states of the world”
3. The representative agent behaves like the more pessimistic individual for low values and behaves like the more optimistic individual for high values
4. The representative agent acts as if he had fear (need for security) for very bad events and hope (desire for potential) for very good events (SP/A Theory, Lopes)
5. The transformation w is inverse S-shaped (Abdellaoui, Gonzalez and Wu, Prelec)
The transformation w
Prelec’s function
Shifts

Theorem

If all the agents have log-utility functions then a left shift on the distribution of μ_i increases attractiveness and a symmetric spread on the distribution of μ_i decreases discriminability.
Time preference rates

\[D_t = \left(\sum_{i \in I} \frac{1}{|I|} (D^i_t)^\eta \right)^{\frac{1}{\eta}} \] where \(D^i_t \equiv \exp(-\rho_i t) \).
Time preference rates

- \(D_t = \left(\sum_{i \in I} \frac{1}{|I|} \left(D_t^i \right)^\eta \right)^{1/\eta} \) where \(D_t^i \equiv \exp(-\rho_i t) \).
- Representative agent marginal and average time preference rates \(\rho_m \) and \(\rho_a

\[\rho_m^D (t) = -\frac{D_t'}{D_t} \]

\[\rho_a^D (t) = -\frac{1}{t} \log D_t \]
Behavioral properties of the rep. agent’s rates

Theorem

\(\rho_m \) and \(\rho_a \) are given by

\[
\rho_a^D(t) = -\frac{1}{t} \log \left[\frac{1}{N} \sum_{i=1}^{N} \exp(-\eta \rho_i t) \right]^{1/\eta}
\]

\[
\rho_m^D(t) = \sum_{i=1}^{N} \frac{\exp(-\eta \rho_i t)}{\sum_{i=1}^{N} \exp(-\eta \rho_i t)} \rho_i
\]

They are lower than the average of the time preference rates

\[
\rho_m^D(t) < \frac{1}{N} \sum_{i=1}^{N} \rho_i \quad \text{and} \quad \rho_a^D(t) < \frac{1}{N} \sum_{i=1}^{N} \rho_i
\]

“Behavioral Properties” (Lengwiller, Gollier-Zeckhauser): \(\rho_m \) and \(\rho_a \) decrease with time and

\[
\lim_{t \to +\infty} \rho_m^D(t) = \lim_{t \to +\infty} \rho_a^D(t) = \inf \rho_i
\]
Specific Distributions

If we assume a Gamma distribution with mean m and variance ν for the ρ_i's we obtain (hyperbolic discounting)

$$\rho^D_m(t) = \frac{m^2}{m + \eta \nu^2 t}$$
A FSD (resp. SSD) dominated shift on the distribution f_ρ of individual marginal time preference rates decreases the representative agent average time preference rate ρ^D_a.
A MLR (resp. PD) dominated shift on the distribution f_{ρ} of individual marginal time preference rates decreases the representative agent average time preference rate ρ^D_m.
Optimism and pessimism

Definition

An agent is said to be optimistic (resp. pessimistic) if \(\frac{f_i}{f} \) is nondecreasing. Agent \(i \) is said to be more optimistic than agent \(j \) and we denote by \(f_i \succ f_j \) if and only if \(\frac{f_i}{f_j} \) is nondecreasing.

The probability weighting function \(g_i \) transforms the objective decumulative distribution function \(F \) into the agent’s subjective decumulative distribution function \(F_i \), i.e. \(F_i = g_i \circ F \).

\(\frac{f_i}{f} \) is nondecreasing (resp. nonincreasing) if and only if \(g_i \) is convex (resp. concave). (Diecidue and Wakker, 2001) in a RDEU framework.
Optimism and pessimism

Definition

An agent is said to be optimistic (resp. pessimistic) if $\frac{f_i}{f}$ is nondecreasing. Agent i is said to be more optimistic than agent j and we denote by $f_i \succsim f_j$ if and only if $\frac{f_i}{f_j}$ is nondecreasing.

The probability weighting function g_i transforms the objective decumulative distribution function F into the agent’s subjective decumulative distribution function F_i, i.e. $F_i = g_i \circ F$.

- $\frac{f_i}{f}$ is nondecreasing (resp. nonincreasing) if and only if g_i is convex (resp. concave). (Diecidue and Wakker, 2001) in a RDEU framework.
- A MLR dominated shift for a given distribution reduces the mean.
Behavioral properties

Theorem

If there are at least one optimistic agent and one pessimistic agent

1. *The representative agent can neither be optimistic, nor pessimistic.*
Behavioral properties

Theorem

If there are at least one optimistic agent and one pessimistic agent

1. The representative agent can neither be optimistic, nor pessimistic.

2. The representative agent overestimates the weight of the “good states of the world” as well as the weight of “bad states of the world”
Behavioral properties

Theorem

If there are at least one optimistic agent and one pessimistic agent

1. **The representative agent can neither be optimistic, nor pessimistic.**

2. **The representative agent overestimates the weight of the “good states of the world” as well as the weight of “bad states of the world”**

3. **The representative agent acts as if he had fear (need for security) for very bad events and hope (desire for potential) for very good events**
Behavioral properties

Theorem

If there are at least one optimistic agent and one pessimistic agent

1. The representative agent can neither be optimistic, nor pessimistic.

2. The representative agent overestimates the weight of the “good states of the world” as well as the weight of “bad states of the world”

3. The representative agent acts as if he had fear (need for security) for very bad events and hope (desire for potential) for very good events

4. $f_M \sim_{\infty} f_{\text{opt}}^{\max}$ and $f_M \sim_{-\infty} f_{\text{pess}}^{\max}$.

5. The probability weighting function is concave for small probabilities, and convex for high probabilities.
Theorem

If there are at least one optimistic agent and one pessimistic agent

1. **The representative agent can neither be optimistic, nor pessimistic.**
2. **The representative agent overestimates the weight of the “good states of the world” as well as the weight of “bad states of the world”**
3. **The representative agent acts as if he had fear (need for security) for very bad events and hope (desire for potential) for very good events**
4. \[f_M \sim_{\infty} f_{\text{opt}}^{\text{max}} \text{ and } f_M \sim_{-\infty} f_{\text{pess}}^{\text{max}}. \]
5. **The probability weighting function is concave for small probabilities, and convex for high probabilities.**
Shifts

Theorem

1. If log-utilities and if agent’s density functions are totally ordered with respect to the FSD order then a FSD dominated shift in agents’ density functions distribution leads to a less attractive density function for the representative agent.
Shifts

Theorem

1. If log-utilities and if agent’s density functions are totally ordered with respect to the FSD order then a FSD dominated shift in agents’ density functions distribution leads to a less attractive density function for the representative agent.

2. If the set \((f_i)_{i \in I} \) of agent’s density functions is totally ordered with respect to the MLR order then a MLR dominated shift in agents’ density functions distribution leads to a more pessimistic representative agent.
Individual behavior can be represented as the aggregate behavior of a collection of individuals.
Interpretation

- Individual behavior can be represented as the aggregate behavior of a collection of individuals
- Is there a way to interpret the brain as a collection of processes?
Interpretation

- Individual behavior can be represented as the aggregate behavior of a collection of individuals
- Is there a way to interpret the brain as a collection of processes?
- Each process has its own belief and its own time preference rate (level of impatience)
Individual behavior can be represented as the aggregate behavior of a collection of individuals.

Is there a way to interpret the brain as a collection of processes?

Each process has its own belief and its own time preference rate (level of impatience).

A central planner (the cortex?) attributes parts of the prospect x to the different processes for evaluation.
Interpretation

- Individual behavior can be represented as the aggregate behavior of a collection of individuals.
- Is there a way to interpret the brain as a collection of processes?
- Each process has its own belief and its own time preference rate (level of impatience).
- A central planner (the cortex?) attributes parts of the prospect x to the different processes for evaluation.
- The attribution is made in order to maximize the total utility (specialization of the processes).
Interpretation

- Individual behavior can be represented as the aggregate behavior of a collection of individuals.
- Is there a way to interpret the brain as a collection of processes?
- Each process has its own belief and its own time preference rate (level of impatience).
- A central planner (the cortex?) attributes parts of the prospect x to the different processes for evaluation.
- The attribution is made in order to maximize the total utility (specialization of the processes).
- Other models in the literature (Carillo-Brocas): asymmetric information.