Equilibrium states and the ergodic theory of positive entropy surface diffeomorphisms Bowen Legacy Conference

Omri Sarig

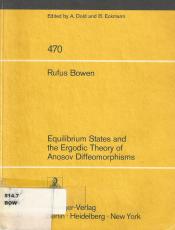
Weizmann Institute of Science

Vancouver, August 2017

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Synopsis What happened since 1975? This talk

Lecture Notes in Mathematics



Bowen's 1975 Book:

The Sinai-Ruelle program to uniformly hyperbolic diffeos.

Synopsis:

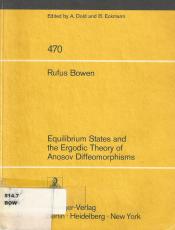
Coding by subshifts of finite type Theory of equilibrium states for subshifts of finite type

Applications to Axiom A diffeos

イロト イポト イヨト イヨト

Synopsis What happened since 1975? This talk

Lecture Notes in Mathematics



Bowen's 1975 Book:

The Sinai-Ruelle program to uniformly hyperbolic diffeos.

Synopsis:

Coding by subshifts of finite type Theory of equilibrium states for subshifts of finite type

Applications to Axiom A diffeos

イロト イポト イヨト イヨト

Synopsis What happened since 1975? This talk

Lecture Notes in Mathematics

Bowen's 1975 Book:

The Sinai-Ruelle program to uniformly hyperbolic diffeos.

Synopsis:

- Coding by subshifts of finite type
- Theory of equilibrium states for subshifts of finite type
- Applications to Axiom A diffeos

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Synopsis What happened since 1975? This talk

Lecture Notes in Mathematics

Bowen's 1975 Book:

The Sinai-Ruelle program to uniformly hyperbolic diffeos.

Synopsis:

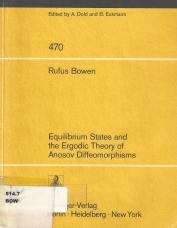
Coding by subshifts of finite type

- Theory of equilibrium states for subshifts of finite type
- Applications to Axiom A diffeos

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Synopsis What happened since 1975? This talk

Lecture Notes in Mathematics



Bowen's 1975 Book:

The Sinai-Ruelle program to uniformly hyperbolic diffeos.

Synopsis:

- Coding by subshifts of finite type
- Theory of equilibrium states for subshifts of finite type
- O Applications to Axiom A diffeos

Synopsis What happened since 1975? This talk

Lecture Notes in Mathematics

Bowen's 1975 Book:

The Sinai-Ruelle program to uniformly hyperbolic diffeos.

Synopsis:

- Coding by subshifts of finite type
 - Theory of equilibrium states for subshifts of finite type
- Output Applications to Axiom A diffeos

Synopsis What happened since 1975? This talk

Lecture Notes in Mathematics

Bowen's 1975 Book:

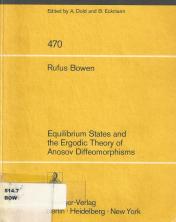
The Sinai-Ruelle program to uniformly hyperbolic diffeos.

Synopsis:

- Coding by subshifts of finite type
- Theory of equilibrium states for subshifts of finite type
- Applications to Axiom A diffeos

Synopsis What happened since 1975? This talk

Lecture Notes in Mathematics



Bowen's 1975 Book:

The Sinai-Ruelle program to uniformly hyperbolic diffeos.

Synopsis:

- Coding by subshifts of finite type
- Theory of equilibrium states for subshifts of finite type
- Applications to Axiom A diffeos

Synopsis What happened since 1975? This talk

What happened since 1975? Pesin Theory!

ヘロン 人間 とくほど くほとう

Synopsis What happened since 1975? This talk

What happened since 1975? Pesin Theory!

Anosov/Axiom A diffeos All positive entropy diffeos in dim 2 and other NUH systems in any dim

→ Ξ → < Ξ →</p>

< < >> < <</>

Synopsis What happened since 1975? This talk

What happened since 1975? Pesin Theory!

Anosov/Axiom A diffeos

All positive entropy diffeos in dim 2 and other NUH systems in any dim

Some Additions to the "tool box" since 1975:

Pesin theory (1976-7)

Ruelle's entropy inequality (1978)

Katok's horseshoe Theorem (1980)

Ledrappier-Young entropy theory (1985)

Yomdin theory (1987)

Katok-Strelcyn-Ledrappier-Przytycki theory for maps with singularities (1988)

イロト イポト イヨト イヨト

Newhouse upper semi-continuity theorem (1989)

Aaronson-Denker-Urbanski theory of Gibbs-Markov maps (1993)

Young towers (1998)

Synopsis What happened since 1975? This talk

This talk: advances on coding Non Unif Hyperbolic systems

ヘロン 人間 とくほど くほとう

Synopsis What happened since 1975? This talk

This talk: advances on coding Non Unif Hyperbolic systems

- NUH systems have countable Markov partitions
- Implications to the theory of equilibrium states
- (Some of) what we still do not understand

Synopsis What happened since 1975? This talk

This talk: advances on coding Non Unif Hyperbolic systems

- NUH systems have countable Markov partitions
- Implications to the theory of equilibrium states
- (Some of) what we still do not understand

Synopsis What happened since 1975? This talk

This talk: advances on coding Non Unif Hyperbolic systems

- NUH systems have countable Markov partitions
- Implications to the theory of equilibrium states
- (Some of) what we still do not understand

Bowen's 1975 Book Advances in coding Implications for equilibrium states Some applications

Symbolic dynamics

ヘロト 人間 とくほとくほと

Bowen's contribution Recent advances Some applications

Historical context

ヘロン 人間 とくほど くほとう

Bowen's contribution Recent advances Some applications

Markov Partitions before 1975:

- **First examples:** Smale codes the repeller of his horseshoe (1965); Adler & Weiss construct a MP for a Hyperbolic toral auto and use it to represent the Haar measure as a Markov measure (1967, 1970).
- General theory: Sinai defines and constructs MP for general Anosov diffeos (1968), and uses it to define "Gibbs measures" (1972). Bowen gives a new construction of MP for Axiom A diffeos (1970).
- Flows: Anosov (Ratner, 1973), Axiom A (Bowen, 1973)

・ロト ・ 同ト ・ ヨト ・ ヨト

Bowen's contribution Recent advances Some applications

Markov Partitions before 1975:

- First examples: Smale codes the repeller of his horseshoe (1965); Adler & Weiss construct a MP for a Hyperbolic toral auto and use it to represent the Haar measure as a Markov measure (1967, 1970).
- General theory: Sinai defines and constructs MP for general Anosov diffeos (1968), and uses it to define "Gibbs measures" (1972). Bowen gives a new construction of MP for Axiom A diffeos (1970).
- Flows: Anosov (Ratner, 1973), Axiom A (Bowen, 1973)

Markov Partitions before 1975:

- First examples: Smale codes the repeller of his horseshoe (1965); Adler & Weiss construct a MP for a Hyperbolic toral auto and use it to represent the Haar measure as a Markov measure (1967, 1970).
- General theory: Sinai defines and constructs MP for general Anosov diffeos (1968), and uses it to define "Gibbs measures" (1972). Bowen gives a new construction of MP for Axiom A diffeos (1970).
- Flows: Anosov (Ratner, 1973), Axiom A (Bowen, 1973)

Bowen's contribution Recent advances Some applications

Markov Partitions before 1975:

- First examples: Smale codes the repeller of his horseshoe (1965); Adler & Weiss construct a MP for a Hyperbolic toral auto and use it to represent the Haar measure as a Markov measure (1967, 1970).
- General theory: Sinai defines and constructs MP for general Anosov diffeos (1968), and uses it to define "Gibbs measures" (1972). Bowen gives a new construction of MP for Axiom A diffeos (1970).
- Flows: Anosov (Ratner, 1973), Axiom A (Bowen, 1973)

→ E > < E >

Bowen's contribution Recent advances Some applications

Bowen's 1975 Book:

A completely new method for constructing MP, using pseudo-orbits and shadowing.

Anosov Shadowing Theorem

If *f* is a uniformly hyperbolic diffeo, then there are $\epsilon, \delta > 0$ s.t.

- If $\underline{x} = (x_i)_{i \in \mathbb{Z}}$ is an ϵ -pseudo orbit (i.e. $d(t(x_i), x_{i+1}) < \epsilon$ for all i)
- Then there is a unique $y := \pi(\underline{x})$ which δ -shadows \underline{x}

(i.e. $d(f^i(y), x_i) < \delta$ for all $i \in \mathbb{Z}$).

Bowen's idea (1975)

Fix a finite $\epsilon/2$ -dense set of points *S*, then

- $\Sigma := \{\epsilon$ -pseudo-orbits in $S^{\mathbb{Z}}\}$ is a SFT, and
- If the shadowing map $\pi: \Sigma \to M$ satisfies $\pi \circ \text{shift} = f \circ \pi$

Bowen's contribution Recent advances Some applications

Bowen's 1975 Book:

A completely new method for constructing MP, using pseudo-orbits and shadowing.

Anosov Shadowing Theorem

If *f* is a uniformly hyperbolic diffeo, then there are $\epsilon, \delta > 0$ s.t.

- If $\underline{x} = (x_i)_{i \in \mathbb{Z}}$ is an ϵ -pseudo orbit (i.e. $d(f(x_i), x_{i+1}) < \epsilon$ for all i)
- Then there is a unique $y := \pi(\underline{x})$ which δ -shadows \underline{x}

(i.e. $d(f^i(y), x_i) < \delta$ for all $i \in \mathbb{Z}$).

Bowen's idea (1975)

Fix a finite $\epsilon/2$ -dense set of points *S*, then

- $\Sigma := \{\epsilon$ -pseudo-orbits in $S^{\mathbb{Z}}\}$ is a SFT, and
- If the shadowing map $\pi: \Sigma \to M$ satisfies $\pi \circ \text{shift} = f \circ \pi$

Bowen's contribution Recent advances Some applications

Bowen's 1975 Book:

A completely new method for constructing MP, using pseudo-orbits and shadowing.

Anosov Shadowing Theorem

If *f* is a uniformly hyperbolic diffeo, then there are $\epsilon, \delta > 0$ s.t.

- If $\underline{x} = (x_i)_{i \in \mathbb{Z}}$ is an ϵ -pseudo orbit (i.e. $d(f(x_i), x_{i+1}) < \epsilon$ for all i)
- Then there is a unique $y := \pi(\underline{x})$ which δ -shadows \underline{x}

(i.e. $d(f^i(y), x_i) < \delta$ for all $i \in \mathbb{Z}$).

Bowen's idea (1975)

Fix a finite $\epsilon/2$ -dense set of points *S*, then

- $\Sigma := \{\epsilon$ -pseudo-orbits in $S^{\mathbb{Z}}\}$ is a SFT, and
- If the shadowing map $\pi: \Sigma \to M$ satisfies $\pi \circ \text{shift} = f \circ \pi$

Bowen's contribution Recent advances Some applications

Bowen's 1975 Book:

A completely new method for constructing MP, using pseudo-orbits and shadowing.

Anosov Shadowing Theorem

If *f* is a uniformly hyperbolic diffeo, then there are $\epsilon, \delta > 0$ s.t.

- If $\underline{x} = (x_i)_{i \in \mathbb{Z}}$ is an ϵ -pseudo orbit (i.e. $d(f(x_i), x_{i+1}) < \epsilon$ for all i)
- Then there is a unique $y := \pi(\underline{x})$ which δ -shadows \underline{x}

(i.e. $d(f^i(y), x_i) < \delta$ for all $i \in \mathbb{Z}$).

Bowen's idea (1975)

Fix a finite $\epsilon/2$ -dense set of points *S*, then

- $\Sigma := \{\epsilon$ -pseudo-orbits in $S^{\mathbb{Z}}\}$ is a SFT, and
- If the shadowing map $\pi: \Sigma \to M$ satisfies $\pi \circ \text{shift} = f \circ \pi$

Bowen's contribution Recent advances Some applications

Bowen's 1975 Book:

A completely new method for constructing MP, using pseudo-orbits and shadowing.

Anosov Shadowing Theorem

If *f* is a uniformly hyperbolic diffeo, then there are $\epsilon, \delta > 0$ s.t.

- If $\underline{x} = (x_i)_{i \in \mathbb{Z}}$ is an ϵ -pseudo orbit (i.e. $d(f(x_i), x_{i+1}) < \epsilon$ for all i)
- Then there is a unique $y := \pi(\underline{x})$ which δ -shadows \underline{x}

(i.e. $d(f^i(y), x_i) < \delta$ for all $i \in \mathbb{Z}$).

Bowen's idea (1975)

Fix a finite $\epsilon/2$ -dense set of points *S*, then

- **①** $\Sigma := \{\epsilon \text{-pseudo-orbits in } S^{\mathbb{Z}}\} \text{ is a SFT, and }$
- 3) the shadowing map $\pi:\Sigma o M$ satisfies $\pi\circ$ shift $=f\circ\pi$
- ${f 0}$ it is possible to refine the cover $\{\pi[{m a}]:{m a}\in{m S}\}$ into a MI

Bowen's contribution Recent advances Some applications

Bowen's 1975 Book:

A completely new method for constructing MP, using pseudo-orbits and shadowing.

Anosov Shadowing Theorem

If *f* is a uniformly hyperbolic diffeo, then there are $\epsilon, \delta > 0$ s.t.

- If $\underline{x} = (x_i)_{i \in \mathbb{Z}}$ is an ϵ -pseudo orbit (i.e. $d(f(x_i), x_{i+1}) < \epsilon$ for all i)
- Then there is a unique $y := \pi(\underline{x})$ which δ -shadows \underline{x}

(i.e. $d(f^i(y), x_i) < \delta$ for all $i \in \mathbb{Z}$).

Bowen's idea (1975)

Fix a finite $\epsilon/2$ -dense set of points *S*, then

- $\Sigma := \{\epsilon$ -pseudo-orbits in $S^{\mathbb{Z}}\}$ is a SFT, and
- 2) the shadowing map $\pi:\Sigma o M$ satisfies $\pi\circ$ shift = f \circ au

) it is possible to refine the cover $\{\pi[\pmb{a}]:\pmb{a}\in\pmb{S}\}$ into a MF

Bowen's contribution Recent advances Some applications

Bowen's 1975 Book:

A completely new method for constructing MP, using pseudo-orbits and shadowing.

Anosov Shadowing Theorem

If *f* is a uniformly hyperbolic diffeo, then there are $\epsilon, \delta > 0$ s.t.

- If $\underline{x} = (x_i)_{i \in \mathbb{Z}}$ is an ϵ -pseudo orbit (i.e. $d(f(x_i), x_{i+1}) < \epsilon$ for all i)
- Then there is a unique $y := \pi(\underline{x})$ which δ -shadows \underline{x}

(i.e. $d(f^i(y), x_i) < \delta$ for all $i \in \mathbb{Z}$).

Bowen's idea (1975)

Fix a finite $\epsilon/2$ -dense set of points *S*, then

- $\Sigma := \{\epsilon$ -pseudo-orbits in $S^{\mathbb{Z}}\}$ is a SFT, and
- **2** the shadowing map $\pi: \Sigma \to M$ satisfies $\pi \circ \text{shift} = f \circ \pi$

29.C

Bowen's contribution Recent advances Some applications

Bowen's 1975 Book:

A completely new method for constructing MP, using pseudo-orbits and shadowing.

Anosov Shadowing Theorem

If *f* is a uniformly hyperbolic diffeo, then there are $\epsilon, \delta > 0$ s.t.

- If $\underline{x} = (x_i)_{i \in \mathbb{Z}}$ is an ϵ -pseudo orbit (i.e. $d(f(x_i), x_{i+1}) < \epsilon$ for all i)
- Then there is a unique $y := \pi(\underline{x})$ which δ -shadows \underline{x}

(i.e. $d(f^i(y), x_i) < \delta$ for all $i \in \mathbb{Z}$).

Bowen's idea (1975)

Fix a finite $\epsilon/2$ -dense set of points *S*, then

- $\Sigma := \{\epsilon$ -pseudo-orbits in $S^{\mathbb{Z}}\}$ is a SFT, and
- **2** the shadowing map $\pi: \Sigma \to M$ satisfies $\pi \circ \text{shift} = f \circ \pi$
- **③** it is possible to refine the cover $\{\pi[a] : a \in S\}$ into a MP.

Bowen's contribution Recent advances Some applications

Recent advances

ヘロン 人間 とくほど くほとう

- All C^{1+e} non-unif. hyperbolic diffeos (Ben-Ovadia, '17), e.g. all surface diffeos with ptv top entropy (S., '13).
- 2 All C^{1+e} 3D flows with positive speed and positive topological entropy (Lima & S., '16)
- Non-uniformly hyperbolic surface maps with singularities, e.g. billiards (Lima & Matheus, '17)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- All C^{1+ε} non-unif. hyperbolic diffeos (Ben-Ovadia, '17), e.g. all surface diffeos with ptv top entropy (S., '13).
- 2 All C^{1+e} 3D flows with positive speed and positive topological entropy (Lima & S., '16)
- Non-uniformly hyperbolic surface maps with singularities, e.g. billiards (Lima & Matheus, '17)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- All C^{1+ε} non-unif. hyperbolic diffeos (Ben-Ovadia, '17), e.g. all surface diffeos with ptv top entropy (S., '13).
- All C^{1+e} 3D flows with positive speed and positive topological entropy (Lima & S., '16)
- Non-uniformly hyperbolic surface maps with singularities, e.g. billiards (Lima & Matheus, '17)

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

- All $C^{1+\epsilon}$ non-unif. hyperbolic diffeos (Ben-Ovadia, '17), e.g. all surface diffeos with ptv top entropy (S., '13).
- All C^{1+e} 3D flows with positive speed and positive topological entropy (Lima & S., '16)
- Non-uniformly hyperbolic surface maps with singularities, e.g. billiards (Lima & Matheus, '17)

Bowen's contribution Recent advances Some applications

æ

ヘロン 人間 とくほど くほとう

Bowen's contribution Recent advances Some applications

Precise statements

ヘロン 人間 とくほど くほとう

Bowen's contribution Recent advances Some applications

diffeos

イロン イロン イヨン イヨン

Bowen's contribution Recent advances Some applications

Terminology

ヘロン 人間 とくほとく ほとう

Bowen's contribution Recent advances Some applications

Countable Markov shift $\sigma: \Sigma \to \Sigma$

Let G = G(V, E) be a countable directed graph, then we let

- $\Sigma = \{ all two-sided paths on G \}$
- $\sigma[(V_i)_{i\in\mathbb{Z}}] = (V_{i+1})_{i\in\mathbb{Z}}$

χ -hyperbolic measure (for $\chi > 0$):

An ergodic invariant measure with Lyapunov spectrum

・ロット (雪) () () () ()

Bowen's contribution Recent advances Some applications

Countable Markov shift $\sigma: \Sigma \to \Sigma$

Let G = G(V, E) be a countable directed graph, then we let

• $\Sigma = \{ all two-sided paths on G \}$

• $\sigma[(v_i)_{i\in\mathbb{Z}}] = (v_{i+1})_{i\in\mathbb{Z}}$

χ -hyperbolic measure (for $\chi > 0$):

An ergodic invariant measure with Lyapunov spectrum

・ロット (雪) () () () ()

Bowen's contribution Recent advances Some applications

Countable Markov shift $\sigma: \Sigma \to \Sigma$

Let G = G(V, E) be a countable directed graph, then we let

• $\Sigma = \{ all two-sided paths on G \}$

•
$$\sigma[(v_i)_{i\in\mathbb{Z}}] = (v_{i+1})_{i\in\mathbb{Z}}$$

χ -hyperbolic measure (for $\chi > 0$):

An ergodic invariant measure with Lyapunov spectrum

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Bowen's contribution Recent advances Some applications

Countable Markov shift $\sigma: \Sigma \to \Sigma$

Let G = G(V, E) be a countable directed graph, then we let

• $\Sigma = \{ all two-sided paths on G \}$

•
$$\sigma[(v_i)_{i\in\mathbb{Z}}] = (v_{i+1})_{i\in\mathbb{Z}}$$

χ -hyperbolic measure (for $\chi > 0$):

An ergodic invariant measure with Lyapunov spectrum

・ロット (雪) () () () ()

Setup

- *M* is compact smooth manifold w/o boundary
- $f: M \to M$ is a $C^{1+\epsilon}$ diffeomorphism

Theorem (Ben-Ovadia, '17; S., '13):

- For every $\chi > 0$, \exists locally compact countable Markov shift $\sigma : \Sigma \to \Sigma$ and a Hölder map $\pi : \Sigma \to M$ s.t.
 - $\pi \circ \sigma = f \circ \pi$
 - $\pi: \Sigma^{\#} \to M$ is finite-to-one*
 - $\pi(\Sigma^{\#})$ has full measure for all χ -hyperbolic erg inv μ

Here $\Sigma^{\#} := \{ \underline{x} \in \Sigma : (x_i)_{i < 0}, (x_i)_{i > 0} \text{ have constant subsequences} \}$, a set of universal full measure

* can be improved (Boyle-Buzzi).

Bowen's contribution Recent advances Some applications

Setup

- *M* is compact smooth manifold w/o boundary
- $f: M \to M$ is a $C^{1+\epsilon}$ diffeomorphism

Theorem (Ben-Ovadia, '17; S., '13):

- For every $\chi > 0$, \exists locally compact countable Markov shift $\sigma : \Sigma \to \Sigma$ and a Hölder map $\pi : \Sigma \to M$ s.t.
 - $\pi \circ \sigma = f \circ \pi$
 - $\pi: \Sigma^{\#} \to M$ is finite-to-one*
 - $\pi(\Sigma^{\#})$ has full measure for all χ -hyperbolic erg inv μ

Here $\Sigma^{\#} := \{ \underline{x} \in \Sigma : (x_i)_{i < 0}, (x_i)_{i > 0} \text{ have constant subsequences} \}$, a set of universal full measure

* can be improved (Boyle-Buzzi).

Setup

- *M* is compact smooth manifold w/o boundary
- $f: M \to M$ is a $C^{1+\epsilon}$ diffeomorphism

Theorem (Ben-Ovadia, '17; S., '13):

For every $\chi > 0$, \exists locally compact countable Markov shift $\sigma : \Sigma \to \Sigma$ and a Hölder map $\pi : \Sigma \to M$ s.t.

- $\pi \circ \sigma = f \circ \pi$
- $\pi: \Sigma^{\#} \to M$ is finite-to-one*
- $\pi(\Sigma^{\#})$ has full measure for all χ -hyperbolic erg inv μ

Here $\Sigma^{\#} := \{ \underline{x} \in \Sigma : (x_i)_{i < 0}, (x_i)_{i > 0} \text{ have constant subsequences} \}$, a set of universal full measure

* can be improved (Boyle-Buzzi).

・ロト ・ ア・ ・ ヨト ・ ヨト

Setup

- *M* is compact smooth manifold w/o boundary
- $f: M \to M$ is a $C^{1+\epsilon}$ diffeomorphism

Theorem (Ben-Ovadia, '17; S., '13):

For every $\chi > 0$, \exists locally compact countable Markov shift $\sigma : \Sigma \to \Sigma$ and a Hölder map $\pi : \Sigma \to M$ s.t.

•
$$\pi \circ \sigma = f \circ \pi$$

- $\pi: \Sigma^{\#} \rightarrow M$ is finite-to-one*
- $\pi(\Sigma^{\#})$ has full measure for all χ -hyperbolic erg inv μ

Here $\Sigma^{\#} := \{ \underline{x} \in \Sigma : (x_i)_{i \ge 0}, (x_i)_{i \ge 0} \text{ have constant subsequences} \}$, a set of universal full measure

* can be improved (Boyle-Buzzi).

Setup

- *M* is compact smooth manifold w/o boundary
- $f: M \to M$ is a $C^{1+\epsilon}$ diffeomorphism

Theorem (Ben-Ovadia, '17; S., '13):

For every $\chi > 0$, \exists locally compact countable Markov shift $\sigma : \Sigma \to \Sigma$ and a Hölder map $\pi : \Sigma \to M$ s.t.

•
$$\pi \circ \sigma = f \circ \pi$$

- $\pi: \Sigma^{\#} \to M$ is finite-to-one*
- $\pi(\Sigma^{\#})$ has full measure for all χ -hyperbolic erg inv μ

Here $\Sigma^{\#} := \{ \underline{x} \in \Sigma : (x_i)_{i \ge 0}, (x_i)_{i \ge 0} \text{ have constant subsequences} \}$, a set of universal full measure

* can be improved (Boyle-Buzzi).

Setup

- *M* is compact smooth manifold w/o boundary
- $f: M \to M$ is a $C^{1+\epsilon}$ diffeomorphism

Theorem (Ben-Ovadia, '17; S., '13):

For every $\chi > 0$, \exists locally compact countable Markov shift $\sigma : \Sigma \to \Sigma$ and a Hölder map $\pi : \Sigma \to M$ s.t.

•
$$\pi \circ \sigma = f \circ \pi$$

- $\pi: \Sigma^{\#} \to M$ is finite-to-one*
- $\pi(\Sigma^{\#})$ has full measure for all χ -hyperbolic erg inv μ

Here $\Sigma^{\#} := \{ \underline{x} \in \Sigma : (x_i)_{i \ge 0}, (x_i)_{i \ge 0} \text{ have constant subsequences} \}$, a set of universal full measure

* can be improved (Boyle-Buzzi).

Setup

- *M* is compact smooth manifold w/o boundary
- $f: M \to M$ is a $C^{1+\epsilon}$ diffeomorphism

Theorem (Ben-Ovadia, '17; S., '13):

For every $\chi > 0$, \exists locally compact countable Markov shift $\sigma : \Sigma \to \Sigma$ and a Hölder map $\pi : \Sigma \to M$ s.t.

•
$$\pi \circ \sigma = f \circ \pi$$

- $\pi: \Sigma^{\#} \to M$ is finite-to-one*
- $\pi(\Sigma^{\#})$ has full measure for all χ -hyperbolic erg inv μ

Here $\Sigma^{\#} := \{ \underline{x} \in \Sigma : (x_i)_{i < 0}, (x_i)_{i > 0} \text{ have constant subsequences} \}$, a set of universal full measure

* can be improved (Boyle-Buzzi).

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Bowen's contribution Recent advances Some applications

flows

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Countable Markov Flow $\sigma_r : \Sigma_r \to \Sigma_r$

A suspension over a countable Markov shift with roof function which is Hölder cts, uniformly bounded away from $0, \infty$.

Setup

M is a compact smooth 3D manifold, and $f^t = C^{1+\epsilon}$ flow on *M* with positive top entropy and positive speed.

Theorem (Lima & S., '16):

For every ergodic hyperbolic measure μ , \exists countable Markov flow $\sigma_r : \Sigma_r \to \Sigma_r$ and a Hölder $\pi : \Sigma_r \to M$ s.t.

- $\pi \circ \sigma_r^t = f^t \circ \pi$ for all t
- $\pi: \Sigma_r^{\#} \to M$ is finite-to-one
- $\pi(\Sigma_r^{\#})$ has full μ -measure.

Here $\Sigma_r^{\#} := \{ (\underline{x}, t) \in \Sigma_r : (x_i)_{i < 0}, (x_i)_{i > 0} \text{ have constant subsequences} \}$, a set of universal full measure

Countable Markov Flow $\sigma_r : \Sigma_r \to \Sigma_r$

A suspension over a countable Markov shift with roof function which is Hölder cts, uniformly bounded away from $0, \infty$.

Setup

M is a compact smooth 3D manifold, and $f^t = C^{1+\epsilon}$ flow on *M* with positive top entropy and positive speed.

Theorem (Lima & S., '16):

For every ergodic hyperbolic measure μ , \exists countable Markov flow $\sigma_r : \Sigma_r \to \Sigma_r$ and a Hölder $\pi : \Sigma_r \to M$ s.t.

- $\pi \circ \sigma_r^t = f^t \circ \pi$ for all t
- $\pi: \Sigma^{\#}_{r} \to M$ is finite-to-one
- $\pi(\Sigma_r^{\#})$ has full μ -measure.

Here $\Sigma_r^{\#} := \{ (\underline{x}, t) \in \Sigma_r : (x_i)_{i < 0}, (x_i)_{i > 0} \text{ have constant subsequences} \}$, a set of universal full measure

Bowen's contribution Recent advances Some applications

Countable Markov Flow $\sigma_r : \Sigma_r \to \Sigma_r$

A suspension over a countable Markov shift with roof function which is Hölder cts, uniformly bounded away from $0, \infty$.

Setup

M is a compact smooth 3D manifold, and $f^t \in C^{1+\epsilon}$ flow on *M* with positive top entropy and positive speed.

Theorem (Lima & S., '16):

For every ergodic hyperbolic measure μ , \exists countable Markov flow $\sigma_r : \Sigma_r \to \Sigma_r$ and a Hölder $\pi : \Sigma_r \to M$ s.t.

- $\pi \circ \sigma_r^t = f^t \circ \pi$ for all t
- $\pi: \Sigma_r^{\#} \to M$ is finite-to-one
- $\pi(\Sigma_r^{\#})$ has full μ -measure.

Here $\Sigma_r^{\#} := \{(\underline{x}, t) \in \Sigma_r : (x_i)_{i \ge 0}, (x_i)_{i \ge 0} \text{ have constant subsequences}\}$, a set of universal full measure

Bowen's contribution Recent advances Some applications

Countable Markov Flow $\sigma_r : \Sigma_r \to \Sigma_r$

A suspension over a countable Markov shift with roof function which is Hölder cts, uniformly bounded away from $0, \infty$.

Setup

M is a compact smooth 3D manifold, and $f^t \in C^{1+\epsilon}$ flow on *M* with positive top entropy and positive speed.

Theorem (Lima & S., '16):

For every ergodic hyperbolic measure μ , \exists countable Markov flow $\sigma_r : \Sigma_r \to \Sigma_r$ and a Hölder $\pi : \Sigma_r \to M$ s.t.

- $\pi \circ \sigma_r^t = f^t \circ \pi$ for all t
- $\pi: \Sigma_r^{\#} \to M$ is finite-to-one
- $\pi(\Sigma_r^{\#})$ has full μ -measure.

Here $\Sigma_r^{\#} := \{(\underline{x}, t) \in \Sigma_r : (x_i)_{i < 0}, (x_i)_{i > 0}$ have constant subsequences}, a set of universal full measure

Bowen's contribution Recent advances Some applications

Countable Markov Flow $\sigma_r : \Sigma_r \to \Sigma_r$

A suspension over a countable Markov shift with roof function which is Hölder cts, uniformly bounded away from $0, \infty$.

Setup

M is a compact smooth 3D manifold, and $f^t \in C^{1+\epsilon}$ flow on *M* with positive top entropy and positive speed.

Theorem (Lima & S., '16):

For every ergodic hyperbolic measure μ , \exists countable Markov flow $\sigma_r : \Sigma_r \to \Sigma_r$ and a Hölder $\pi : \Sigma_r \to M$ s.t.

•
$$\pi \circ \sigma_r^t = f^t \circ \pi$$
 for all t

•
$$\pi: \Sigma^{\#}_{r} \to M$$
 is finite-to-one

• $\pi(\Sigma_r^{\#})$ has full μ -measure.

Here $\Sigma_r^{\#} := \{(\underline{x}, t) \in \Sigma_r : (x_i)_{i < 0}, (x_i)_{i > 0} \text{ have constant subsequences}\}$, a set of universal full measure

Countable Markov Flow $\sigma_r : \Sigma_r \to \Sigma_r$

A suspension over a countable Markov shift with roof function which is Hölder cts, uniformly bounded away from $0, \infty$.

Setup

M is a compact smooth 3D manifold, and $f^t = C^{1+\epsilon}$ flow on *M* with positive top entropy and positive speed.

Theorem (Lima & S., '16):

For every ergodic hyperbolic measure μ , \exists countable Markov flow $\sigma_r : \Sigma_r \to \Sigma_r$ and a Hölder $\pi : \Sigma_r \to M$ s.t.

•
$$\pi \circ \sigma_r^t = f^t \circ \pi$$
 for all t

•
$$\pi: \Sigma^{\#}_{r} o M$$
 is finite-to-one

• $\pi(\Sigma_r^{\#})$ has full μ -measure.

Here $\Sigma_r^{\#} := \{(\underline{x}, t) \in \Sigma_r : (x_i)_{i < 0}, (x_i)_{i > 0}$ have constant subsequences}, a set of universal full measure

Examples of applications

ヘロン 人間 とくほとく ほとう

Theorem (Lima & S. '16):

Suppose f^t is a 3D C^{∞} flow with positive speed and positive topological entropy *h*, and let

 $\pi(T) := \#\{\text{closed orbits of length} \leq T\},\$

then $\pi(T) \ge const\left(\frac{e^{hT}}{T}\right)$ for all *T* large enough.

Related results

Margulis ('69), Parry & Pollicott ('83): for mixing Anosov/Axiom A flows, $\pi(T) \sim e^{hT}/hT$. Katok ('80): For general NUH flows, lim inf $\frac{1}{T} \log \pi(T) \geq h$

Theorem (Lima & S. '16):

Suppose f^t is a 3D C^{∞} flow with positive speed and positive topological entropy *h*, and let

 $\pi(T) := \#\{\text{closed orbits of length} \leq T\},\$

then $\pi(T) \ge const\left(\frac{e^{hT}}{T}\right)$ for all *T* large enough.

Related results

Margulis ('69), Parry & Pollicott ('83): for mixing Anosov/Axiom A flows, $\pi(T) \sim e^{hT}/hT$. Katok ('80): For general NUH flows, lim inf $\frac{1}{T} \log \pi(T) \geq h$

イロト イポト イヨト イヨト

Bowen's contribution Recent advances Some applications

Theorem (Lima, Ledrappier & S., '17)

Under the above assumptions, every ergodic measure of maximal entropy is Bernoulli, or Bernoulli flow×rotational flow.

Related results

Ornstein & Weiss ('73): Geodesic flows in const neg curv. Ratner ('74): Anosov flows.

General flows: ergodic component of smooth measure with ptv entropy (Pesin '77); ergodic component of the SRB measure (Ledrappier ('84)).

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Bowen's contribution Recent advances Some applications

Theorem (Lima, Ledrappier & S., '17)

Under the above assumptions, every ergodic measure of maximal entropy is Bernoulli, or Bernoulli flow×rotational flow.

Related results

Ornstein & Weiss ('73): Geodesic flows in const neg curv. Ratner ('74): Anosov flows.

General flows: ergodic component of smooth measure with ptv entropy (Pesin '77); ergodic component of the SRB measure (Ledrappier ('84)).

・ロト ・ 同ト ・ ヨト・

Bowen's 1975 Book Heuristics Advances in coding Ruelle's Operator Implications for equilibrium states What we still do not understand

implications for equilibrium states

ヘロン 人間 とくほど くほとう

• Bowen codes by finite state Markov shifts.

• We code by locally compact countable state Markov shifts.

How does this affect the theory of equilibrium states?

ヘロト ヘワト ヘビト ヘビト

- Bowen codes by finite state Markov shifts.
- We code by locally compact countable state Markov shifts.

How does this affect the theory of equilibrium states?

ヘロト ヘワト ヘビト ヘビト

- Bowen codes by finite state Markov shifts.
- We code by locally compact countable state Markov shifts.

How does this affect the theory of equilibrium states?

프 🖌 🛪 프 🕨

Bowen's 1975 Book Heuristics Advances in coding Ruelle's Operator Implications for equilibrium states What we still do not understand

Heuristics

ヘロン 人間 とくほど くほとう

Heuristics Ruelle's Operator What we still do not understand

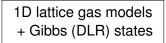
Table of Contents 1. GIBBS MEASURES B. Ruelle's Perron-Froebenius theorem 21 28 2. GENERAL THREMODYNAMIC FORMALISM 50 56 3. AXION A DIFFEOMORPHISMS 68 C. Markov partitions D. Symbolic dynamics 84 4. ERGODIC THEORY OF AXIOM A DIFFEOMORPHISMS C. Attractors and Anosov diffeomorphisms 101 These notes came out of a course given at the University of Minnesota and were revised while the author was on a Sloan Fellowship.

・ロト ・ ア・ ・ ヨト ・ ヨト

Heuristics Ruelle's Operator What we still do not understand

The thermodynamic analogy

Hyperbolic systems + natural measures



Y. Sinai: Gibbs measures in ergodic theory. Russian Math. Surv. 166 (1972), 21-64.

O. Lanford & D. Ruelle: Observables at infinity and states with short range correlations in statistical mechanics. CMP 13 (1969), 194–215.

 \leftrightarrow

D. Ruelle: A measure associated with Axiom A attractors. Amer. J. Math. 98 (1976), 619-654.

イロト イポト イヨト イヨト

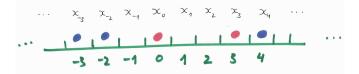
Bowen's 1975 Book Heuristics Advances in coding Ruelle's Operator Implications for equilibrium states What we still do not unde

1D Lattice gas model

ヘロン 人間 とくほど くほとう

Heuristics Ruelle's Operator What we still do not understand

1D Lattice gas systems



Configuration space: Σ = {possible states of each site}^Z

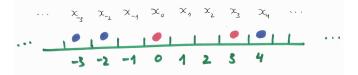
- Interaction potential: $U(x_0|x_1, x_2, x_3, \cdots)$
- Gibbs state: A probability measure on Σ which satisfies the Dobrushin Lanford Ruelle equations (ignoring temperature):

$$\mu(x_{-N},\ldots,x_m|x_{m+1},x_{m+2},\cdots) \propto \exp\left(-\sum_{k=0}^{N+m-1}U(\sigma^k x_{-N}^\infty)\right) \mu-\text{a.s.}$$

(4) E > (4) E > (

Heuristics Ruelle's Operator What we still do not understand

1D Lattice gas systems



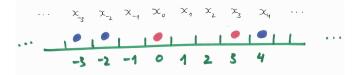
- Configuration space: $\Sigma = \{ \text{possible states of each site} \}^{\mathbb{Z}}$
- Interaction potential: $U(x_0|x_1, x_2, x_3, \cdots)$
- Gibbs state: A probability measure on Σ which satisfies the Dobrushin Lanford Ruelle equations (ignoring temperature):

$$\mu(x_{-N},\ldots,x_m|x_{m+1},x_{m+2},\cdots) \propto \exp\left(-\sum_{k=0}^{N+m-1} U(\sigma^k x_{-N}^\infty)\right) \quad \mu-\text{a.s.}$$

イロト イポト イヨト イヨト

Heuristics Ruelle's Operator What we still do not understand

1D Lattice gas systems



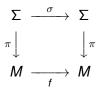
- Configuration space: $\Sigma = \{ \text{possible states of each site} \}^{\mathbb{Z}}$
- Interaction potential: $U(x_0|x_1, x_2, x_3, \cdots)$
- Gibbs state: A probability measure on Σ which satisfies the Dobrushin Lanford Ruelle equations (ignoring temperature):

$$\mu(x_{-N},\ldots,x_m|x_{m+1},x_{m+2},\cdots) \propto \exp\left(-\sum_{k=0}^{N+m-1}U(\sigma^k x_{-N}^\infty)\right) \quad \mu-\text{a.s.}$$

(4) E > (4) E > (1)

Heuristics Ruelle's Operator What we still do not understand

Hyperbolic dynamical systems with "natural" invariant measures μ



Sinai (1972), Ruelle (1976):

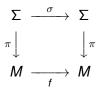
The DLR equations, interpreted dynamically, are just equations for the conditional measures on stable leaves

Sinai (1972), Ruelle (1976):

Invariant measures, interpreted physically, are DLR states with the "potential" $U := -\log(Jacobian of conditional measures)$

Heuristics Ruelle's Operator What we still do not understand

Hyperbolic dynamical systems with "natural" invariant measures μ



Sinai (1972), Ruelle (1976):

The DLR equations, interpreted dynamically, are just equations for the conditional measures on stable leaves

Sinai (1972), Ruelle (1976):

Invariant measures, interpreted physically, are DLR states with the "potential" $U := -\log(\text{Jacobian of conditional measures})$

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1,x_2,x_3,\ldots)$

"No phase transitions" (Ruelle, Dobrushin): fany special examples with critical henomena (e.g. Fisher & Felderhof)

PHYSICS

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1,x_2,x_3,\ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

.ong-range

Many special examples with critical phenomena (e.g. Fisher & Felderhof)

- Several DLR states
- sub-exponential decay officers
 correlations
- Fluctuations with infinite variance (stable laws)

ヘロン ヘロン ヘビン ヘビン

2

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1,x_2,x_3,\ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

.ong-range

Many special examples with critical phenomena (e.g. Fisher & Felderhof)

- Several DLR states
- sub-exponential decay of correlations
- Ructuations with infinite variance (stable laws)

ヘロア ヘロア ヘロア ヘロア

-21

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1, x_2, x_3, \ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

ong-range

- Many special examples with critical phenomena (e.g. Fisher & Felderhof)
 - Several DLR states
 - sub-exponential decay of correlations
 - Fluctuations with infinite variance economic (stable laws)

ヘロト ヘヨト ヘヨト

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1, x_2, x_3, \ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

ong-range

Many special examples with critical phenomena (e.g. Fisher & Felderhof)

- Several DLR states
- sub-exponential decay of correlations
- Fluctuations with infinite variance (stable laws)

イロト イロト イヨト イヨト

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1, x_2, x_3, \ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

ong-range

Many special examples with critical phenomena (e.g. Fisher & Felderhof)

 sub-exponential decay of corrolations

 Fluctuations with infinite variance (stable laws)

イロト イロト イヨト イヨト

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1, x_2, x_3, \ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

ong-range

Many special examples with critical phenomena (e.g. Fisher & Felderhof)

 sub-exponential decay of correlations

 Huctuations with infinite variance (stable laws)

イロト イロト イヨト イヨト

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1, x_2, x_3, \ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

ong-range

Many special examples with critical phenomena (e.g. Fisher & Felderhof)

- sub-exponential decay of correlations
- Infinite variations with infinite variations with the second secon

イロト イロト イヨト イヨト

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1, x_2, x_3, \ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

ong-range

Many special examples with critical phenomena (e.g. Fisher & Felderhof)

 sub-exponential decay of correlations

 Fluctuations with infinite variance (stable laws)

イロト イロト イヨト イヨト

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1,x_2,x_3,\ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

ong-range

Many special examples with critical phenomena (e.g. Fisher & Felderhof)

- Several DLR states
- sub-exponential decay of correlations
- Fluctuations with infinite variance (stable laws)

ヘロマ ヘヨマ ヘヨマ

- Critical exponents
 - No spectral gap

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1,x_2,x_3,\ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

Long-range

Many special examples with critical phenomena (e.g. Fisher & Felderhof)

- Several DLR states
- sub-exponential decay of correlations
- Fluctuations with infinite variance (stable laws)

- Critical exponents
- No spectral gap

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1,x_2,x_3,\ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

Long-range

Many special examples with critical phenomena (e.g. Fisher & Felderhof)

- Several DLR states
- sub-exponential decay of correlations
- Fluctuations with infinite variance (stable laws)

- Critical exponents
- No spectral gap

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1,x_2,x_3,\ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

Long-range

- Several DLR states
- sub-exponential decay of correlations
- Fluctuations with infinite variance (stable laws)
- Critical exponents
- No spectral gap

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1,x_2,x_3,\ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

Long-range

- Several DLR states
- sub-exponential decay of correlations
- Fluctuations with infinite variance (stable laws)
- Critical exponents
- No spectral gap

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1,x_2,x_3,\ldots)$

Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

Long-range

- Several DLR states
- sub-exponential decay of correlations
- Fluctuations with infinite variance (stable laws)
- Critical exponents
- No spectral gap

Heuristics Ruelle's Operator What we still do not understand

Short range vs long-range interaction

 $U(x_0|x_1,x_2,x_3,\ldots)$

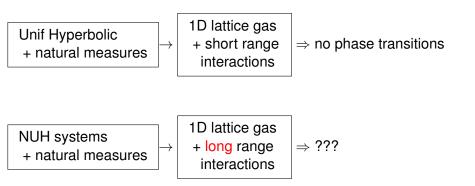
Short-range

"No phase transitions" (Ruelle, Dobrushin):

- Unique DLR states
- Exponential decay of correlations
- Gaussian fluctuations (CLT)
- Linear response
- Spectral gap

Long-range

- Several DLR states
- sub-exponential decay of correlations
- Fluctuations with infinite variance (stable laws)
- Critical exponents
- No spectral gap



(E)

Heuristics Ruelle's Operator What we still do not understand

Why long range?

Σ = {paths on an infinite directed graph G}

Σ locally compact ⇒ every vertex of G has finite degree
 ⇒ diam(G) = ∞ with respect to the graph metric

 $dist_G(a, b) := \min\{n : a \text{ connects to } b \text{ in } n \text{ steps}\} \\ + \min\{m : b \text{ connects to } a \text{ in } m \text{ steps}\}$

Long range effect:

In any configuration $(\cdots, x_0, \cdots, x_n, \cdots)$, the value of x_n influences the value of x_0 : dist $_G(x_0, x_n) \leq n$.

Heuristics Ruelle's Operator What we still do not understand

Why long range?

- Σ = {paths on an infinite directed graph G}
- Σ locally compact ⇒ every vertex of G has finite degree
 ⇒ diam(G) = ∞ with respect to the graph metric

 $dist_G(a, b) := min\{n : a \text{ connects to } b \text{ in } n \text{ steps}\} \\ + min\{m : b \text{ connects to } a \text{ in } m \text{ steps}\}$

Long range effect:

In any configuration $(\cdots, x_0, \cdots, x_n, \cdots)$, the value of x_n influences the value of x_0 : dist $_G(x_0, x_n) \le n$.

Heuristics Ruelle's Operator What we still do not understand

Why long range?

- Σ = {paths on an infinite directed graph G}
- Σ locally compact ⇒ every vertex of G has finite degree
 ⇒ diam(G) = ∞ with respect to the graph metric

 $dist_G(a, b) := \min\{n : a \text{ connects to } b \text{ in } n \text{ steps}\} \\ + \min\{m : b \text{ connects to } a \text{ in } m \text{ steps}\}$

Long range effect:

In any configuration $(\cdots, x_0, \cdots, x_n, \cdots)$, the value of x_n influences the value of x_0 : dist_G $(x_0, x_n) \le n$.

-

Heuristics Ruelle's Operator What we still do not understand

Why long range?

- Σ = {paths on an infinite directed graph G}
- Σ locally compact ⇒ every vertex of G has finite degree
 ⇒ diam(G) = ∞ with respect to the graph metric

 $dist_G(a, b) := \min\{n : a \text{ connects to } b \text{ in } n \text{ steps}\} \\ + \min\{m : b \text{ connects to } a \text{ in } m \text{ steps}\}$

Long range effect:

In any configuration $(\cdots, x_0, \cdots, x_n, \cdots)$, the value of x_n influences the value of x_0 : dist_{*G*} $(x_0, x_n) \le n$.

Bowen's 1975 Book Heuristics Advances in coding Ruelle's Operator Implications for equilibrium states What we still do not unders

Heuristics → Mathematics

ヘロト 人間 とくほとく ほとう

Heuristics Ruelle's Operator What we still do not understand

Ruelle's operator

ヘロン 人間 とくほとく ほとう

Setup

Σ =countable Markov shift, which is

- infinite alphabet
- topologically mixing (not necessary)
- locally compact (not necessary)
- finite top entropy (not necessary)

Ruelle's Operator

- $\Sigma^+ = \{(x_0, x_1, \ldots) : x \in \Sigma\}$
- φ = φ(x₀, x₁,...) bounded, Hölder (can be relaxed),
 φ = −βU

• $L_{\phi}: C_{c}(\Sigma^{+}) \to C_{c}(\Sigma^{+}), | (L_{\phi}f)(x) = \sum_{\sigma V = x} e^{\phi(Y)} f(Y)$

э

ヘロア 人間 アメヨア 人口 ア

Heuristics Ruelle's Operator What we still do not understand

Setup

Σ =countable Markov shift, which is

infinite alphabet

- topologically mixing (not necessary)
- locally compact (not necessary)
- finite top entropy (not necessary)

Ruelle's Operator

- $\Sigma^+ = \{(x_0, x_1, \ldots) : x \in \Sigma\}$
- φ = φ(x₀, x₁,...) bounded, Hölder (can be relaxed),
 φ = −βU

• $L_{\phi}: C_{c}(\Sigma^{+}) \to C_{c}(\Sigma^{+}), | (L_{\phi}f)(x) = \sum_{\sigma y = x} e^{\phi(y)} f(y)$

э

ヘロア 人間 アメヨア 人口 ア

Heuristics Ruelle's Operator What we still do not understand

Setup

 Σ =countable Markov shift, which is

- infinite alphabet
- topologically mixing (not necessary)
- locally compact (not necessary)
- finite top entropy (not necessary)

Ruelle's Operator

- $\Sigma^+ = \{(x_0, x_1, \ldots) : x \in \Sigma\}$
- φ = φ(x₀, x₁,...) bounded, Hölder (can be relaxed),
 φ = −βU

• $L_{\phi}: C_{c}(\Sigma^{+}) \to C_{c}(\Sigma^{+}), | (L_{\phi}f)(x) = \sum_{\sigma V = x} e^{\phi(V)} f(Y)$

э

ヘロン ヘアン ヘビン ヘビン

Heuristics Ruelle's Operator What we still do not understand

Setup

 Σ =countable Markov shift, which is

- infinite alphabet
- topologically mixing (not necessary)
- locally compact (not necessary)
- finite top entropy (not necessary)

Ruelle's Operator

- $\Sigma^+ = \{(x_0, x_1, \ldots) : x \in \Sigma\}$
- φ = φ(x₀, x₁,...) bounded, Hölder (can be relaxed),
 φ = −βU

• $L_{\phi}: C_{c}(\Sigma^{+}) \to C_{c}(\Sigma^{+}), | (L_{\phi}f)(x) = \sum_{\sigma V = x} e^{\phi(V)} f(Y)$

э

ヘロン ヘアン ヘビン ヘビン

Heuristics Ruelle's Operator What we still do not understand

Setup

 Σ =countable Markov shift, which is

- infinite alphabet
- topologically mixing (not necessary)
- locally compact (not necessary)
- finite top entropy (not necessary)

Ruelle's Operator

- $\Sigma^+ = \{(x_0, x_1, \ldots) : x \in \Sigma\}$
- φ = φ(x₀, x₁,...) bounded, Hölder (can be relaxed), φ = −βU

• $L_{\phi}: C_{c}(\Sigma^{+}) \to C_{c}(\Sigma^{+}), | (L_{\phi}f)(x) = \sum_{\sigma_{V}=x} e^{\phi(V)}f(y)$

э

ヘロト 人間 とくほとくほとう

Heuristics Ruelle's Operator What we still do not understand

Setup

 Σ =countable Markov shift, which is

- infinite alphabet
- topologically mixing (not necessary)
- locally compact (not necessary)
- finite top entropy (not necessary)

Ruelle's Operator

- $\Sigma^+ = \{(x_0, x_1, \ldots) : x \in \Sigma\}$
- $\phi = \phi(x_0, x_1, ...)$ bounded, Hölder (can be relaxed), $\phi = -\beta U$
- $L_{\phi}: C_c(\Sigma^+) \to C_c(\Sigma^+), \ | (L_{\phi}f)(x) = \sum_{\sigma y = x} e^{\phi(y)} f(y)$

э

ヘロト ヘ戸ト ヘヨト ヘヨト

Heuristics Ruelle's Operator What we still do not understand

Setup

 Σ =countable Markov shift, which is

- infinite alphabet
- topologically mixing (not necessary)
- locally compact (not necessary)
- finite top entropy (not necessary)

Ruelle's Operator

•
$$\Sigma^+ = \{(x_0, x_1, \ldots) : x \in \Sigma\}$$

- $\phi = \phi(x_0, x_1, ...)$ bounded, Hölder (can be relaxed), $\phi = -\beta U$
- $L_{\phi}: C_c(\Sigma^+) \to C_c(\Sigma^+), \ | (L_{\phi}f)(x) = \sum_{\sigma y = x} e^{\phi(y)} f(y)$

ヘロン 人間 とくほど くほとう

Setup

 Σ =countable Markov shift, which is

- infinite alphabet
- topologically mixing (not necessary)
- locally compact (not necessary)
- finite top entropy (not necessary)

Ruelle's Operator

•
$$\Sigma^+ = \{(x_0, x_1, \ldots) : x \in \Sigma\}$$

- $\phi = \phi(x_0, x_1, ...)$ bounded, Hölder (can be relaxed), $\phi = -\beta U$
- $L_{\phi}: C_{c}(\Sigma^{+}) \rightarrow C_{c}(\Sigma^{+}), | (L_{\phi}f)(x) = \sum_{\sigma y = x} e^{\phi(y)}f(y)$

ヘロト ヘ戸ト ヘヨト ヘヨト

Setup

 Σ =countable Markov shift, which is

- infinite alphabet
- topologically mixing (not necessary)
- locally compact (not necessary)
- finite top entropy (not necessary)

Ruelle's Operator

•
$$\Sigma^+ = \{(x_0, x_1, \ldots) : x \in \Sigma\}$$

•
$$\phi = \phi(x_0, x_1, ...)$$
 bounded, Hölder (can be relaxed),
 $\phi = -\beta U$

•
$$L_{\phi}: C_{c}(\Sigma^{+}) \rightarrow C_{c}(\Sigma^{+}), | (L_{\phi}f)(x) = \sum_{\sigma y = x} e^{\phi(y)} f(y)$$

э

< < >> < <</>

Heuristics Ruelle's Operator What we still do not understand

The eigenvector problem:

Find a positive Radon measure ν , a ptv cts function *h*, and a ptv number λ s.t. $L_{\phi}h = \lambda h$, $L_{\phi}^*\nu = \lambda \nu$ with positive λ , *h*, ν .

Meaning:

- The eigenmeasure is a DLR state (on Σ⁺)
- The eigenfunction is an invariant density
- The eigenvalue satisfies $\log \lambda = \sup\{h_{\mu}(\sigma) + \int \phi d\mu\}$

Lanford & Ruelle: Observables at infinity and states with short range correlations in statistical mechanics, CMP (1969)

- D. Ruelle: A measure associated with Axiom A attractors, Amer. J. Math. (1976)
- S.: Thermodynamic formalism for countable Markov shifts, ETDS (1999)

Buzzi & S.: Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. ETDS (2003)

Heuristics Ruelle's Operator What we still do not understand

The eigenvector problem:

Find a positive Radon measure ν , a ptv cts function *h*, and a ptv number λ s.t. $L_{\phi}h = \lambda h$, $L_{\phi}^*\nu = \lambda \nu$ with positive λ , *h*, ν .

Meaning:

- The eigenmeasure is a DLR state (on Σ^+)
- The eigenfunction is an invariant density
- The eigenvalue satisfies $\log \lambda = \sup\{h_{\mu}(\sigma) + \int \phi d\mu\}$
- The equilibrium measure is $hd\nu$ (if $\int hd\nu = 1$)

Lanford & Ruelle: Observables at infinity and states with short range correlations in statistical mechanics, CMP (1969)

D. Ruelle: A measure associated with Axiom A attractors, Amer. J. Math. (1976)

S.: Thermodynamic formalism for countable Markov shifts, ETDS (1999)

Heuristics Ruelle's Operator What we still do not understand

The eigenvector problem:

Find a positive Radon measure ν , a ptv cts function *h*, and a ptv number λ s.t. $L_{\phi}h = \lambda h$, $L_{\phi}^*\nu = \lambda \nu$ with positive λ , *h*, ν .

Meaning:

- The eigenmeasure is a DLR state (on Σ⁺)
- The eigenfunction is an invariant density
- The eigenvalue satisfies $\log \lambda = \sup\{h_{\mu}(\sigma) + \int \phi d\mu\}$
- The equilibrium measure is $hd\nu$ (if $\int hd\nu = 1$)

Lanford & Ruelle: Observables at infinity and states with short range correlations in statistical mechanics, CMP (1969)

D. Ruelle: A measure associated with Axiom A attractors, Amer. J. Math. (1976)

S.: Thermodynamic formalism for countable Markov shifts, ETDS (1999)

Heuristics Ruelle's Operator What we still do not understand

The eigenvector problem:

Find a positive Radon measure ν , a ptv cts function *h*, and a ptv number λ s.t. $L_{\phi}h = \lambda h$, $L_{\phi}^*\nu = \lambda \nu$ with positive λ , *h*, ν .

Meaning:

- The eigenmeasure is a DLR state (on Σ^+)
- The eigenfunction is an invariant density
- The eigenvalue satisfies $\log \lambda = \sup\{h_{\mu}(\sigma) + \int \phi d\mu\}$

• The equilibrium measure is $hd\nu$ (if $\int hd\nu = 1$)

Lanford & Ruelle: Observables at infinity and states with short range correlations in statistical mechanics, CMP (1969)

D. Ruelle: A measure associated with Axiom A attractors, Amer. J. Math. (1976)

S.: Thermodynamic formalism for countable Markov shifts, ETDS (1999)

Heuristics Ruelle's Operator What we still do not understand

The eigenvector problem:

Find a positive Radon measure ν , a ptv cts function *h*, and a ptv number λ s.t. $L_{\phi}h = \lambda h$, $L_{\phi}^*\nu = \lambda \nu$ with positive λ , *h*, ν .

Meaning:

- The eigenmeasure is a DLR state (on Σ^+)
- The eigenfunction is an invariant density
- The eigenvalue satisfies $\log \lambda = \sup\{h_{\mu}(\sigma) + \int \phi d\mu\}$

• The equilibrium measure is $hd\nu$ (if $\int hd\nu = 1$)

Lanford & Ruelle: Observables at infinity and states with short range correlations in statistical mechanics, CMP (1969)

D. Ruelle: A measure associated with Axiom A attractors, Amer. J. Math. (1976)

S.: Thermodynamic formalism for countable Markov shifts, ETDS (1999)

Heuristics Ruelle's Operator What we still do not understand

The eigenvector problem:

Find a positive Radon measure ν , a ptv cts function *h*, and a ptv number λ s.t. $L_{\phi}h = \lambda h$, $L_{\phi}^*\nu = \lambda \nu$ with positive λ , *h*, ν .

Meaning:

- The eigenmeasure is a DLR state (on Σ^+)
- The eigenfunction is an invariant density
- The eigenvalue satisfies $\log \lambda = \sup\{h_{\mu}(\sigma) + \int \phi d\mu\}$
- The equilibrium measure is $hd\nu$ (if $\int hd\nu = 1$)

Lanford & Ruelle: Observables at infinity and states with short range correlations in statistical mechanics, CMP (1969)

D. Ruelle: A measure associated with Axiom A attractors, Amer. J. Math. (1976)

S.: Thermodynamic formalism for countable Markov shifts, ETDS (1999)

Heuristics Ruelle's Operator What we still do not understand

So everything boils down to solving $L_{\phi}h = \lambda h, L_{\phi}^*\nu = \lambda \nu$

Finite state Markov shifts

A solution exists and is unique (Ruelle's Perron-Frobenius Theorem)

Countable state Markov shifts

There are two cases, which behave differently:

- Recurrent case: For some (all) f ∈ C_c(Σ⁺), x ∈ Σ⁺, ∑ zⁿ(Lⁿ_φf)(x) = ∞ at the rad of convergence
- Transient case: For some (all) f ∈ C_c(Σ⁺), x ∈ Σ⁺ ∑ zⁿ(Lⁿ_φf)(x) < ∞ at the rad of convergence

・ロト ・ ア・ ・ ヨト ・ ヨト

Heuristics Ruelle's Operator What we still do not understand

So everything boils down to solving $L_{\phi}h = \lambda h, L_{\phi}^*\nu = \lambda \nu$

Finite state Markov shifts

A solution exists and is unique (Ruelle's Perron-Frobenius Theorem)

Countable state Markov shifts

There are two cases, which behave differently:

- Recurrent case: For some (all) $f \in C_c(\Sigma^+)$, $x \in \Sigma^+$, $\sum z^n(L_{\phi}^n f)(x) = \infty$ at the rad of convergence
- Transient case: For some (all) $f \in C_c(\Sigma^+)$, $x \in \Sigma^+$, $\sum z^n (L^n_{\phi} f)(x) < \infty$ at the rad of convergence

イロト イポト イヨト イヨト

Heuristics Ruelle's Operator What we still do not understand

So everything boils down to solving $L_{\phi}h = \lambda h, L_{\phi}^*\nu = \lambda \nu$

Finite state Markov shifts

A solution exists and is unique (Ruelle's Perron-Frobenius Theorem)

Countable state Markov shifts

There are two cases, which behave differently:

- Recurrent case: For some (all) $f \in C_c(\Sigma^+)$, $x \in \Sigma^+$, $\sum z^n (L_{\phi}^n f)(x) = \infty$ at the rad of convergence
- Transient case: For some (all) $f \in C_c(\Sigma^+)$, $x \in \Sigma^+$, $\sum z^n (L^n_{\phi} f)(x) < \infty$ at the rad of convergence

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Heuristics Ruelle's Operator What we still do not understand

So everything boils down to solving $L_{\phi}h = \lambda h, L_{\phi}^*\nu = \lambda \nu$

Finite state Markov shifts

A solution exists and is unique (Ruelle's Perron-Frobenius Theorem)

Countable state Markov shifts

There are two cases, which behave differently:

- Recurrent case: For some (all) $f \in C_c(\Sigma^+)$, $x \in \Sigma^+$, $\sum z^n (L_{\phi}^n f)(x) = \infty$ at the rad of convergence
- Transient case: For some (all) $f \in C_c(\Sigma^+)$, $x \in \Sigma^+$, $\sum z^n (L_{\phi}^n f)(x) < \infty$ at the rad of convergence

イロト イポト イヨト イヨト

Heuristics Ruelle's Operator What we still do not understand

Theorem (S., '01)

The recurrent case is exactly the case when $L_{\phi}h = \lambda h, L_{\phi}^*\nu = \lambda \nu$ can be solved, and ν is a conservative Radon measure. In this case h, ν are unique up to normalization.

Theorem (Van Cyr, '13)

In the transient case, and when \sum is locally compact, there exists a Radon measure ν s.t. $L_{\phi}^* \nu = \lambda \nu$.

Theorem (Ofer Shwartz, '17)

In the transient case, and when \sum is locally compact, there exists a positive continuous *h* s.t. $L_{\phi}h = \lambda h$. But in this case $h\nu$ is a dissipative infinite invariant measure. The solution is not necessarily unique \rightarrow Martin Boundary!

Heuristics Ruelle's Operator What we still do not understand

Theorem (S., '01)

The recurrent case is exactly the case when $L_{\phi}h = \lambda h, L_{\phi}^*\nu = \lambda \nu$ can be solved, and ν is a conservative Radon measure. In this case h, ν are unique up to normalization.

Theorem (Van Cyr, '13)

In the transient case, and when Σ is locally compact, there exists a Radon measure ν s.t. $L_{\phi}^* \nu = \lambda \nu$.

Theorem (Ofer Shwartz, '17)

In the transient case, and when \sum is locally compact, there exists a positive continuous *h* s.t. $L_{\phi}h = \lambda h$. But in this case $h\nu$ is a dissipative infinite invariant measure. The solution is not necessarily unique \rightarrow Martin Boundary!

Heuristics Ruelle's Operator What we still do not understand

Theorem (S., '01)

The recurrent case is exactly the case when $L_{\phi}h = \lambda h, L_{\phi}^*\nu = \lambda \nu$ can be solved, and ν is a conservative Radon measure. In this case h, ν are unique up to normalization.

Theorem (Van Cyr, '13)

In the transient case, and when $\sum_{\nu \in \mathcal{V}} \mathbb{E}[\Sigma]$ is locally compact, there exists a Radon measure ν s.t. $L_{\phi}^* \nu = \lambda \nu$.

Theorem (Ofer Shwartz, '17)

In the transient case, and when \sum is locally compact, there exists a positive continuous h s.t. $L_{\phi}h = \lambda h$. But in this case $h\nu$ is a dissipative infinite invariant measure. The solution is not necessarily unique \rightarrow Martin Boundary!

Heuristics Ruelle's Operator What we still do not understand

<ロト <回 > < 注 > < 注 > 、

Heuristics Ruelle's Operator What we still do not understand

Does transience actually happen? Is it common?

ヘロン 人間 とくほど くほとう

Heuristics Ruelle's Operator What we still do not understand

Does transience actually happen? Is it common?

Theorem (S. & Cyr '09; Cyr, '11):

For all locally compact* top. transitive countable Markov shift,

• There are locally Hölder transient potentials (Cyr);

• But they are rare: The set of locally Hölder recurrent potentials s.t. that L_{ϕ} acts on some rich Banach space with spectral gap is C^{0} -open, and Hölder dense. (Cyr & S.)

* Also for all non-locally compact shifts without the uniform Rome property (Cyr '11).

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Heuristics Ruelle's Operator What we still do not understand

Does transience actually happen? Is it common?

Theorem (S. & Cyr '09; Cyr, '11):

For all locally compact* top. transitive countable Markov shift,

• There are locally Hölder transient potentials (Cyr);

• But they are rare: The set of locally Hölder recurrent potentials s.t. that L_{ϕ} acts on some rich Banach space with spectral gap is C^{0} -open, and Hölder dense. (Cyr & S.)

* Also for all non-locally compact shifts without the uniform Rome property (Cyr '11).

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Does transience actually happen? Is it common?

Theorem (S. & Cyr '09; Cyr, '11):

For all locally compact* top. transitive countable Markov shift,

- There are locally Hölder transient potentials (Cyr);
- But they are rare: The set of locally Hölder recurrent potentials s.t. that L_{ϕ} acts on some rich Banach space with spectral gap is C^{0} -open, and Hölder dense. (Cyr & S.)

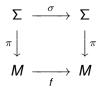
* Also for all non-locally compact shifts without the uniform Rome property (Cyr '11).

・ 同 ト ・ ヨ ト ・ ヨ ト ・

What we still do not understand

◆□ > ◆□ > ◆豆 > ◆豆 > -

What we still don't understand

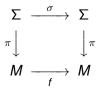


Cyr's Theorem: ∃ transient locally Hölder potentials on Σ.

- Are they lifts of Hölder functions on M?
- Newhouse-Yomdin Theory suggests that in the C^{∞} case, the answer could be negative for potentials satisfying the Denker condition $\sup \phi \inf \phi < P_{top}(\phi)$.

くロト (過) (目) (日)

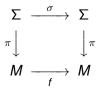
What we still don't understand



- Cyr's Theorem: ∃ transient locally Hölder potentials on Σ.
- Are they lifts of Hölder functions on M?
- Newhouse-Yomdin Theory suggests that in the C^{∞} case, the answer could be negative for potentials satisfying the Denker condition $\sup \phi \inf \phi < P_{top}(\phi)$.

ヘロア 人間 アメヨア 人口 ア

What we still don't understand



- Cyr's Theorem: ∃ transient locally Hölder potentials on Σ.
- Are they lifts of Hölder functions on M?
- Newhouse-Yomdin Theory suggests that in the C^{∞} case, the answer could be negative for potentials satisfying the Denker condition $\sup \phi \inf \phi < P_{top}(\phi)$.

ヘロト 人間 ト ヘヨト ヘヨト

Bowen's work is as relevant and fresh today as it was 40 years ago!

⇒ < ⇒ >