Bowen factors of Markov shifts and surface diffeomorphisms

Jérôme Buzzi (CNRS & Université Paris-Sud)

The Mathematical Legacy of Rufus Bowen

July 31st, 2017 at UBC, Vancouver
Outline

1 Introduction
 - Symbolic dynamics from Bowen to Sarig
 - Consequences for classification and periodic orbits

2 Background on Markov shifts
 - Spectral decomposition and their entropy
 - Periodic points

3 Factors of Markov shifts
 - Pathologies
 - Bowen factors

4 Results
 - Almost Borel classification
 - Periodic points

5 Conclusion - Some questions
The classical setting: uniform hyperbolicity

Theorem (Sinai, Bowen)

Any Axiom-A diffeomorphism \(f : M \to M \) has a Markov partition with small diameter \((f, \Omega(f))\) is a Holder continuous factor of a subshift of finite type with good properties:

(i) finite-to-one; (ii) described by a relation on the alphabet:

We will now discuss the quotient map \(\pi: \Sigma_A \to \Omega_i \) defined by \(\pi(x) = \cap_{j=1}^{\infty} f^{-j} R x_j \).

The Markov partition \(\mathcal{C} = \{R_1, \ldots, R_n\} \) is taken so that \(\max_{1 \leq j \leq n} \text{diam}(R_j) \) is less than an expansivity constant. Define a relation \(\sim \) on \(\{1, \ldots, n\} \) by \(j \sim k \) iff \(R_j \cap R_k \neq \emptyset \). Define \(\sim \) on \(\Sigma_A \) by \(x \sim y \) iff \(x \sim y \) for all \(r \in \mathbb{Z} \). It is easy to prove that \(\pi(x) = \pi(y) \) precisely if \(x \sim y \).

Consequences

The factor is an isomorphism wrt any ergodic measure with support \(\Omega(f) \)

Finitely many ergodic measures maximizing the entropy (mme) \(\mu_1, \ldots, \mu_r \)

Each \(\mu_i \equiv \text{Bernoulli} \times \mathbb{Z}/p_i \mathbb{Z} \)

\[|\{x = f^n x\}| \sim (p_1 + \cdots + p_r) e^{nh_{\text{top}}(f)} \text{ for } n \in \text{lcm}(p_1, \ldots, p_r) \mathbb{Z} \]

In fact, \(\zeta_f(z) = \prod_{\mathcal{O}} (1 - z^{\mathcal{O}})^{-1} \) is rational (Manning)

Goal: generalize to surface diffeomorphisms using Sarig’s codings
The classical setting: uniform hyperbolicity

Theorem (Sinai, Bowen)

Any Axiom-A diffeomorphism $f : M \to M$ has a Markov partition with small diameter $(f, \Omega(f))$ is a Holder continuous factor of a subshift of finite type with good properties: (i) finite-to-one; (ii) described by a relation on the alphabet:

We will now discuss the quotient map $\pi : \Sigma_A \to \Omega_i$ defined by $\pi(x) = \bigcap_{j=-\infty}^{\infty} f^{-j} R_x j$. The Markov partition $\mathcal{C} = \{R_1, \ldots, R_n\}$ is taken so that $2 \max_{1 \leq j \leq n} \text{diam}(R_j)$ is less than an expansive constant. Define a relation \sim on $\{1, \ldots, n\}$ by $j \sim k$ iff $R_j \cap R_k \neq \emptyset$. Define \sim on Σ_A by $x \sim y$ iff $x_r \sim y_r$, $\forall r \in \mathbb{Z}$. It is easy to prove that $\pi(x) = \pi(y)$ precisely if $x \sim y$.

Consequences

The factor is an isomorphism wrt any ergodic measure with support $\Omega(f)$ Finitely many ergodic measures maximizing the entropy (mme) μ_1, \ldots, μ_r each $\mu_i \equiv \text{Bernoulli} \times \mathbb{Z}/p_i \mathbb{Z}$

$|\{x = f^n x\}| \sim (p_1 + \cdots + p_r) e^{n h_{\text{top}}(f)}$ for $n \in \text{lcm}(p_1, \ldots, p_r) \mathbb{Z}$

In fact, $\zeta_f(z) = \prod_{\mathcal{O}} (1 - z^{|\mathcal{O}|})^{-1}$ is rational (Manning)

Goal: generalize to surface diffeomorphisms using Sarig’s codings
The classical setting: uniform hyperbolicity

Theorem (Sinai, Bowen)

Any Axiom-A diffeomorphism $f : M \to M$ has a Markov partition with small diameter $(f, \Omega(f))$ is a Holder continuous factor of a subshift of finite type with good properties: (i) finite-to-one; (ii) described by a relation on the alphabet:

We will now discuss the quotient map $\pi : \Sigma_A \to \Omega_i$ defined by $\pi(x) = \cap_{j=-\infty}^{\infty} f^{-j} R_x R_x$. The Markov partition $\mathcal{C} = \{R_1, \ldots, R_n\}$ is taken so that $2 \max_{1 \leq j \leq n} \text{diam}(R_j)$ is less than an expansive constant. Define a relation \sim on $\{1, \ldots, n\}$ by $j \sim k$ iff $R_j \cap R_k \neq \emptyset$. Define \sim on Σ_A by $x \sim y$ iff $x \sim y$, $\forall r \in \mathbb{Z}$. It is easy to prove that $\pi(x) = \pi(y)$ precisely if $x \sim y$.

Consequences

The factor is an isomorphism wrt any ergodic measure with support $\Omega(f)$

Finitely many ergodic measures maximizing the entropy (mme) μ_1, \ldots, μ_r each $\mu_i \equiv \text{Bernoulli} \times \mathbb{Z}/p_i \mathbb{Z}$

$|\{x = f^n x\}| \sim (p_1 + \cdots + p_r) e^{n h_{\text{top}}(f)}$ for $n \in \text{lcm}(p_1, \ldots, p_r) \mathbb{Z}$

In fact, $\zeta_f(z) = \prod_{\mathcal{O}} (1 - z^{\mid \mathcal{O} \mid})^{-1}$ is rational (Manning)

Goal: generalize to surface diffeomorphisms using Sarig’s codings
The classical setting: uniform hyperbolicity

Theorem (Sinai, Bowen)

Any Axiom-A diffeomorphism $f : M \to M$ has a Markov partition with small diameter $(f, \Omega(f))$ is a Holder continuous factor of a subshift of finite type with good properties: (i) finite-to-one; (ii) described by a relation on the alphabet:

We will now discuss the quotient map $\pi : \Sigma_A \to \Omega_i$ defined by $\pi(x) = \bigcap_{j=-\infty}^{\infty} f^{-j} R_x j$.

The Markov partition $\tilde{C} = \{R_1, \ldots, R_n\}$ is taken so that $2 \max_{1 \leq j \leq n} \text{diam}(R_j)$ is less than an expansive constant. Define a relation \sim on $\{1, \ldots, n\}$ by $j \sim k$ iff $R_j \cap R_k \neq \emptyset$. Define \sim on Σ_A by $x \sim y$ iff $x \sim y$, $\forall r \in \mathbb{Z}$. It is easy to prove that $\pi(x \sim \ldots \sim y)$ is $\pi(y)$ precisely if $x \sim \ldots \sim y$.

Consequences

The factor is an isomorphism wrt any ergodic measure with support $\Omega(f)$

Finitely many ergodic measures maximizing the entropy (mme) μ_1, \ldots, μ_r

each $\mu_i \equiv \text{Bernoulli} \times \mathbb{Z}/p_i \mathbb{Z}$

$|\{x = f^n x\}| \sim (p_1 + \cdots + p_r) e^{nh_{\text{top}}(f)}$ for $n \in \text{lcm}(p_1, \ldots, p_r) \mathbb{Z}$

In fact, $\zeta_f(z) = \prod_{\mathcal{O}} (1 - z^{\mathcal{O}})^{-1}^{-1}$ is rational (Manning)

Goal: generalize to surface diffeomorphisms using Sarig’s codings

J. Buzzi
Bowen factors and surface diffeomorphisms
The Mathematical Legacy of R. Bowen
The classical setting: uniform hyperbolicity

Theorem (Sinai, Bowen)

Any Axiom-A diffeomorphism $f : M \to M$ has a Markov partition with small diameter $(f, \Omega(f))$ is a Holder continuous factor of a subshift of finite type with good properties: (i) finite-to-one; (ii) described by a relation on the alphabet:

\[
\pi : \Sigma_A \to \Omega_i \text{ defined by } \pi(x) = \bigcap_{j=-\infty}^{\infty} f^{-j} R_{x_j}.
\]

We will now discuss the quotient map $\pi : \Sigma_A \to \Omega_i$ defined by $\pi(x) = \bigcap_{j=-\infty}^{\infty} f^{-j} R_{x_j}$. The Markov partition $\mathcal{C} = \{R_1, \ldots, R_n\}$ is taken so that $2 \max_{1 \leq j \leq n} \text{diam}(R_j)$ is less than an expansive constant. Define a relation \sim on $\{1, \ldots, n\}$ by $j \sim k$ iff $R_j \cap R_k \neq \emptyset$. Define \sim on Σ_A by $x \sim y$ iff $x_r \sim y_r \forall r \in \mathbb{Z}$. It is easy to prove that $\pi(x) = \pi(y)$ precisely if $x \sim y$.

p. 13 of Bowen, On Axiom A diffeomorphisms (1978); Manning (1971)

Consequences

The factor is an isomorphism wrt any ergodic measure with support $\Omega(f)$

Finitely many ergodic measures maximizing the entropy (mme) μ_1, \ldots, μ_r each $\mu_i \equiv \text{Bernoulli} \times \mathbb{Z}/p_i \mathbb{Z}$

$|\{x = f^n x\}| \sim (p_1 + \cdots + p_r) e^{n h_{\text{top}}(f)}$ for $n \in \text{lcm}(p_1, \ldots, p_r) \mathbb{Z}$

In fact, $\zeta_f(z) = \prod_{\mathcal{O}} (1 - z^{|\mathcal{O}|})^{-1}$ is rational (Manning)
The classical setting: uniform hyperbolicity

Theorem (Sinai, Bowen)

Any Axiom-A diffeomorphism \(f : M \to M \) has a Markov partition with small diameter \((f, \Omega(f))\) is a Holder continuous factor of a subshift of finite type with good properties: (i) finite-to-one; (ii) described by a relation on the alphabet:

\[
\{x = f^n x\} \sim (p_1 + \cdots + p_r) e^{n h_{\text{top}}(f)} \text{ for } n \in \text{lcm}(p_1, \ldots, p_r) \mathbb{Z}
\]

In fact, \(\zeta_f(z) = \prod_{O} (1 - z^{|O|})^{-1} \) is rational (Manning)

Consequences

The factor is an isomorphism wrt any ergodic measure with support \(\Omega(f) \)

Finitely many ergodic measures maximizing the entropy (mme) \(\mu_1, \ldots, \mu_r \) each \(\mu_i \equiv \text{Bernoulli} \times \mathbb{Z}/p_i \mathbb{Z} \)

\[
|\{x = f^n x\}| \sim (p_1 + \cdots + p_r) e^{n h_{\text{top}}(f)} \text{ for } n \in \text{lcm}(p_1, \ldots, p_r) \mathbb{Z}
\]

Goal: generalize to surface diffeomorphisms using Sarig's codings
The classical setting: uniform hyperbolicity

Theorem (Sinai, Bowen)

Any Axiom-A diffeomorphism \(f : M \to M \) has a Markov partition with small diameter \((f, \Omega(f))\) is a Holder continuous factor of a subshift of finite type with good properties: (i) finite-to-one; (ii) described by a relation on the alphabet:

\[
\pi(x) = \bigcap_{j=-\infty}^{\infty} \overline{f^{-j}x_j}.
\]

The Markov partition \(\overline{C} = \{R_1, \ldots, R_n\} \) is taken so that \(2 \max_{1 \leq j \leq n} \text{diam}(R_j) \) is less than an expansive constant. Define a relation \(\sim \) on \(\{1, \ldots, n\} \) by \(j \sim k \) iff \(R_j \cap R_k \neq \emptyset \). Define \(\preceq \) on \(\Sigma_A \) by \(x \preceq y \) iff \(x_r \sim y_r \) for all \(r \in \mathbb{Z} \). It is easy to prove that \(\pi(x) = \pi(y) \) precisely if \(x \preceq y \).

Consequences

The factor is an isomorphism wrt any ergodic measure with support \(\Omega(f) \)

Finitely many ergodic measures maximizing the entropy (mme) \(\mu_1, \ldots, \mu_r \)
each \(\mu_i \equiv \text{Bernoulli} \times \mathbb{Z}/p_i\mathbb{Z} \)

\[
|\{x = f^nx\}| \sim (p_1 + \cdots + p_r) e^{nhtop(f)} \text{ for } n \in \text{lcm}(p_1, \ldots, p_r)\mathbb{Z}
\]

In fact, \(\zeta_f(z) = \prod_{\partial} (1 - z^{\text{diam}(\partial)})^{-1} \) is rational (Manning)

Goal: generalize to surface diffeomorphisms using Sarig’s codings
The classical setting: uniform hyperbolicity

Theorem (Sinai, Bowen)

Any Axiom-A diffeomorphism \(f : M \to M \) has a Markov partition with small diameter \((f, \Omega(f)) \) is a Holder continuous factor of a subshift of finite type with good properties:

(i) finite-to-one; (ii) described by a relation on the alphabet:

\[
\mathbb{C} = \{ R_1, \ldots, R_n \}
\]

The Markov partition \(\mathbb{C} = \{ R_1, \ldots, R_n \} \) is taken so that \(2 \max_{1 \leq j \leq n} \text{diam}(R_j) \) is less than an expansive constant. Define a relation \(\sim \) on \(\{ 1, \ldots, n \} \) by \(j \sim k \) iff \(R_j \cap R_k \neq \emptyset \). Define \(\sim \) on \(\Sigma_A \) by \(x \sim y \) iff \(x_r \sim y_r \) for all \(r \in \mathbb{Z} \). It is easy to prove that \(\pi(x) = \pi(y) \) precisely if \(x \sim y \).

Consequences

The factor is an isomorphism wrt any ergodic measure with support \(\Omega(f) \)

Finitely many ergodic measures maximizing the entropy (mme) \(\mu_1, \ldots, \mu_r \)

each \(\mu_i \equiv \text{Bernoulli } \times \mathbb{Z}/p_i\mathbb{Z} \)

\[
|\{ x = f^n x \}| \sim (p_1 + \cdots + p_r) e^{n \text{htop}(f)} \quad \text{for } n \in \text{lcm}(p_1, \ldots, p_r)\mathbb{Z}
\]

In fact, \(\zeta_f(z) = \prod_{\mathcal{O}} (1 - z^{\lvert \mathcal{O} \rvert})^{-1} \) is rational (Manning)

Goal: generalize to surface diffeomorphisms using Sarig’s codings
Almost Borel classification

Definition

\(S : X \to X \) and \(T : Y \to Y \) are **almost Borel conjugate mod zero entropy** if \(\exists \) invariant Borel subsets \(X' \subset X \), \(Y' \subset Y \) and a Borel isomorphism \(\psi : X' \to Y' \) s.t.

(i) \(\psi \circ S = T \circ \psi \);

(ii) \(X \setminus X' \) and \(Y' \setminus Y \) carry only measures with zero entropy

Using the Bowen property of Sarig’s coding and Hochman’s almost Borel classification:

Theorem 1 (Boyle-B)

Any \(C^{1+} \)-diffeomorphism of a compact surface is almost Borel conjugate mod zero entropy to a Markov shift

Using "magic word" isomorphisms as between almost conjugate SFTs

Theorem 2 (B)

Let \(f \) be a \(C^\infty \)-diffeomorphism of a compact surface and \(0 < \chi < h_{\text{top}}(f) \)
Let \(\mu_1, \ldots, \mu_r \) be mme’s, with \(\mu_i \) isomorphic to Bernoulli \(\times \mathbb{Z}/p_i\mathbb{Z} \)
Let \(p := \text{lcm}(p_1, \ldots, p_r) \)

\[
\lim_{n \to \infty, p|n} \left| \{ x \in M : f^n x = x, \chi\text{-hyperbolic} \} \right| e^{-nh_{\text{top}}(f)} \geq p_1 + \cdots + p_r
\]

Compare Sarig; Kaloshin; Burguet
Almost Borel classification

Definition

$S : X \to X$ and $T : Y \to Y$ are **almost Borel conjugate mod zero entropy** if there exist invariant Borel subsets $X' \subset X$, $Y' \subset Y$ and a Borel isomorphism $\psi : X' \to Y'$ such that:

(i) $\psi \circ S = T \circ \psi$; (ii) $X \setminus X'$ and $Y' \setminus Y$ carry only measures with zero entropy.

Using the Bowen property of Sarig’s coding and Hochman’s almost Borel classification:

Theorem 1 (Boyle-B)

Any C^{1+}-diffeomorphism of a compact surface is almost Borel conjugate mod zero entropy to a Markov shift.

Using "magic word" isomorphisms as between almost conjugate SFTs

Theorem 2 (B)

Let f be a C^∞-diffeomorphism of a compact surface and $0 < \chi < h_{\text{top}}(f)$. Let μ_1, \ldots, μ_r be mme’s, with μ_i isomorphic to Bernoulli $\times \mathbb{Z}/p_i\mathbb{Z}$. Let $p := \text{lcm}(p_1, \ldots, p_r)$.

$$\lim_{n \to \infty, p | n} | \{ x \in M : f^n x = x, \chi\text{-hyperbolic} \} e^{-n h_{\text{top}}(f)} \geq p_1 + \cdots + p_r$$

Compare Sarig; Kaloshin; Burguet
Almost Borel classification

Definition

$S : X \rightarrow X$ and $T : Y \rightarrow Y$ are **almost Borel conjugate mod zero entropy** if there exist invariant Borel subsets $X' \subset X$, $Y' \subset Y$ and a Borel isomorphism $\psi : X' \rightarrow Y'$ such that:

1. $\psi \circ S = T \circ \psi$;
2. $X \setminus X'$ and $Y' \setminus Y$ carry only measures with zero entropy.

Using the Bowen property of Sarig’s coding and Hochman’s almost Borel classification:

Theorem 1 (Boyle-B)

Any C^{1+}-diffeomorphism of a compact surface is almost Borel conjugate mod zero entropy to a Markov shift.

Using "magic word" isomorphisms as between almost conjugate SFTs

Theorem 2 (B)

Let f be a C^∞-diffeomorphism of a compact surface and $0 < \chi < h_{\text{top}}(f)$

Let μ_1, \ldots, μ_r be mme’s, with μ_i isomorphic to $\text{Bernoulli} \times \mathbb{Z}/p_i\mathbb{Z}$

Let $p := \text{lcm}(p_1, \ldots, p_r)$

$$\lim_{n \to \infty, p \mid n} \frac{\left| \left\{ x \in M : f^n x = x, \chi \text{-hyperbolic} \right\} \right|}{e^{-nh_{\text{top}}(f)}} \geq p_1 + \cdots + p_r$$

Compare Sarig; Kaloshin; Burguet
Almost Borel classification

Definition

$S : X \to X$ and $T : Y \to Y$ are almost Borel conjugate mod zero entropy if there exist invariant Borel subsets $X' \subset X$, $Y' \subset Y$ and a Borel isomorphism $\psi : X' \to Y'$ such that:

1. $\psi \circ S = T \circ \psi$;
2. $X \setminus X'$ and $Y' \setminus Y$ carry only measures with zero entropy.

Using the Bowen property of Sarig’s coding and Hochman’s almost Borel classification:

Theorem 1 (Boyle-B)

Any C^{1+}-diffeomorphism of a compact surface is almost Borel conjugate mod zero entropy to a Markov shift.

Using "magic word" isomorphisms as between almost conjugate SFTs

Theorem 2 (B)

Let f be a C^∞-diffeomorphism of a compact surface and $0 < \chi < h_{\text{top}}(f)$. Let μ_1, \ldots, μ_r be mme’s, with μ_i isomorphic to Bernoulli $\times \mathbb{Z}/p_i\mathbb{Z}$.

Let $p := \text{lcm}(p_1, \ldots, p_r)$

$$\lim_{n \to \infty, p|n} \left| \{ x \in M : f^n x = x, \chi\text{-hyperbolic} \} \right| e^{-nh_{\text{top}}(f)} \geq p_1 + \cdots + p_r$$

Compare Sarig; Kaloshin; Burguet
Markov shifts

A oriented, countable graph with vertices \mathcal{V}_G and edges $\mathcal{E} \subset \mathcal{V}_G \times \mathcal{V}_G$

Definition

The **Markov shift** defined by G is $S_G : X_G \rightarrow X_G$:

$$X_G := \{x \in \mathcal{V}_G^\mathbb{Z} : \forall n \in \mathbb{Z} \ x_n \xrightarrow{G} x_{n+1}\} \text{ with } S_G : (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$$

(will drop indices G whenever possible)

Subshifts of finite type (SFT)

A Markov shift is C^0-conjugate to some SFT iff X compact iff G can be chosen finite

Theorem (Spectral decomposition)

The non-wandering set of a Markov shift (X, S) splits into transitive components

$$\Omega(X_G) = \bigsqcup_{i \in I} X_{G_i} \text{ with } S : X_{G_i} \rightarrow X_{G_i} \text{ (topologically) transitive}$$

Furthermore,

$$X_{G_i} = \bigsqcup_{j=0}^{p_i-1} S^j(Y_i) \text{ with } S^{p_i} : Y_i \rightarrow Y_i \text{ topologically mixing}$$

($G_i)_{i \in I}$ are the strongly connected components of G and p_i are their periods
Markov shifts

G oriented, countable graph with vertices \mathcal{V}_G and edges $\mathcal{E} \subset \mathcal{V}_G \times \mathcal{V}_G$

Definition

The **Markov shift** defined by G is $S_G : X_G \to X_G$:

$$X_G := \{ x \in \mathcal{V}_G^\mathbb{Z} : \forall n \in \mathbb{Z} \ x_n \xrightarrow{G} x_{n+1} \} \text{ with } S_G : (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$$

(will drop indices G whenever possible)

Subshifts of finite type (SFT)

A Markov shift is C^0-conjugate to some SFT iff X compact iff G can be chosen finite

Theorem (Spectral decomposition)

The non-wandering set of a Markov shift (X, S) splits into transitive components

$$\Omega(X_G) = \bigsqcup_{i \in I} X_{G_i} \text{ with } S : X_{G_i} \to X_{G_i} \text{ (topologically) transitive}$$

Furthermore,

$$X_{G_i} = \bigsqcup_{j=0}^{p_i-1} S^j(Y_i) \text{ with } S^{p_i} : Y_i \to Y_i \text{ topologically mixing}$$

$(G_i)_{i \in I}$ are the strongly connected components of G and p_i are their periods
Markov shifts

G oriented, countable graph with vertices V_G and edges $\mathcal{E} \subset V_G \times V_G$

Definition

The **Markov shift** defined by G is $S_G : X_G \rightarrow X_G$:

$$X_G := \{ x \in V_G^\mathbb{Z} : \forall n \in \mathbb{Z} \ x_n \xrightarrow{G} x_{n+1} \} \text{ with } S_G : (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$$

(will drop indices G whenever possible)

Subshifts of finite type (SFT)

A Markov shift is C^0-conjugate to some SFT iff X compact iff G can be chosen finite

Theorem (Spectral decomposition)

The non-wandering set of a Markov shift (X, S) splits into transitive components

$$\Omega(X_G) = \bigsqcup_{i \in I} X_{G_i} \text{ with } S : X_{G_i} \rightarrow X_{G_i} \text{ (topologically) transitive}$$

Furthermore,

$$X_{G_i} = \bigsqcup_{j=0}^{p_i-1} S^j(Y_i) \text{ with } S^{p_i} : Y_i \rightarrow Y_i \text{ topologically mixing}$$

$(G_i)_{i \in I}$ are the strongly connected components of G and p_i are their periods
Markov shifts

G oriented, countable graph with vertices \mathcal{V}_G and edges $\mathcal{E} \subset \mathcal{V}_G \times \mathcal{V}_G$

Definition

The **Markov shift** defined by G is $S_G : X_G \to X_G$:

$$X_G := \{ x ∈ \mathcal{V}_G^\mathbb{Z} : \forall n ∈ \mathbb{Z} \ x_n \xrightarrow{G} x_{n+1} \} \text{ with } S_G : (x_n)_{n ∈ \mathbb{Z}} \mapsto (x_{n+1})_{n ∈ \mathbb{Z}}$$

(will drop indices G whenever possible)

Subshifts of finite type (SFT)

A Markov shift is C^0-conjugate to some SFT iff X compact iff G can be chosen finite

Theorem (Spectral decomposition)

The non-wandering set of a Markov shift (X, S) splits into **transitive components**

$$\Omega(X_G) = \bigsqcup_{i ∈ I} X_{G_i} \text{ with } S : X_{G_i} → X_{G_i} \text{ (topologically) transitive}$$

Furthermore,

$$X_{G_i} = \bigsqcup_{j=0}^{p_i-1} S^j(Y_i) \text{ with } S^{p_i} : Y_i → Y_i \text{ topologically mixing}$$

$(G_i)_{i ∈ I}$ are the strongly connected components of G and p_i are their periods
Markov shifts – entropy

\(h(S, \nu) \) Kolmogorov-Sinai entropy

Theorem (Gurevič)

For a Markov shift \(S \), the Borel entropy

\[
 h(S) := \sup_{\mu \in \mathcal{P}(S)} h(S, \mu) \in [0, \infty]
\]

is the upper growth rate of the periodic orbits through a given vertex

Definition

An **mme** (ergodic invariant probability measure maximizing the entropy) is \(\mu \in \mathcal{P}_{\text{erg}}(S) \) such that \(h(S, \mu) = \sup_{\nu \in \mathcal{P}(S)} h(S, \nu) \)

Theorem (Gurevič)

If \(X \) is transitive then it has at most one mme \(\mu \)

*In this case, \(X \) is called **positive recurrent (PR)** and \(\mu \) is (fully-supported, Markov) Parry measure, isomorphic to Bernoulli \(\times \mathbb{Z}/p\mathbb{Z} \) (or simply: **periodic-Bernoulli**)*
Markov shifts – entropy

$h(S, \nu)$ Kolmogorov-Sinai entropy

Theorem (Gurevič)

For a Markov shift S, the Borel entropy

$$h(S) := \sup_{\mu \in \mathcal{P}(S)} h(S, \mu) \in [0, \infty]$$

is the upper growth rate of the periodic orbits through a given vertex

Definition

An mme (ergodic invariant probability measure maximizing the entropy) is

$$\mu \in \mathcal{P}_{\text{erg}}(S) \text{ such that } h(S, \mu) = \sup_{\nu \in \mathcal{P}(S)} h(S, \nu)$$

Theorem (Gurevič)

If X is transitive then it has at most one mme μ.

In this case, X is called positive recurrent (PR) and μ is (fully-supported, Markov) Parry measure, isomorphic to Bernoulli $\times \mathbb{Z}/p\mathbb{Z}$ (or simply: periodic-Bernoulli)
Background on Markov shifts

Spectral decomposition and their entropy

Markov shifts – entropy

\(h(S, \nu) \) Kolmogorov-Sinai entropy

Theorem (Gurevič)

For a Markov shift \(S \), the Borel entropy

\[
 h(S) := \sup_{\mu \in \mathcal{P}(S)} h(S, \mu) \in [0, \infty]
\]

is the upper growth rate of the periodic orbits through a given vertex

Definition

An **mme** (ergodic invariant probability measure maximizing the entropy) is

\[
 \mu \in \mathcal{P}_{\text{erg}}(S) \text{ such that } h(S, \mu) = \sup_{\nu \in \mathcal{P}(S)} h(S, \nu)
\]

Theorem (Gurevič)

If \(X \) is transitive then it has at most one mme \(\mu \).
In this case, \(X \) is called **positive recurrent (PR)** and \(\mu \) is (fully-supported, Markov) Parry measure, isomorphic to Bernoulli \(\times \mathbb{Z}/p\mathbb{Z} \) (or simply: **periodic-Bernoulli**).
Markov shifts – periodic points

Markov shift $S : X \to X$ defined by graph G
Assume **transitive** with $h(S) < \infty$ and period p

Classical positive matrix theory yields:

Theorem

$[F] := \{x \in X : x_0 \in F\}$ for some finite set $F \neq \emptyset$ of vertices of G
$\text{Fix}(S^j, F) := \{x \in X : S^j x = x \text{ and } O(x) \cap [F] \neq \emptyset\}$

If G is not PR, $\lim_{k \to \infty} |\text{Fix}(S^{kp}, F)| e^{-kp h(S)} = 0$
If G is PR, $\lim_{k \to \infty} |\text{Fix}(S^{kp}, F)| e^{-kp h(S)} = p$

Counter-examples

Without restricting to a finite set of vertices:
- $\text{Fix}(S^{kp}, G)$ can be infinite
- $\text{Fix}(S^{kp}, G)$ can be finite but grow arbitrarily fast
Markov shifts – periodic points

Markov shift $S : X \to X$ defined by graph G
Assume **transitive** with $h(S) < \infty$ and period p

Classical positive matrix theory yields:

Theorem

$[F] := \{x \in X : x_0 \in F\}$ for some finite set $F \neq \emptyset$ of vertices of G
$\text{Fix}(S^j, F) := \{x \in X : S^j x = x \text{ and } O(x) \cap [F] \neq \emptyset\}$

If G is not PR, $\lim_{k \to \infty} |\text{Fix}(S^{kp}, F)| e^{-kp h(S)} = 0$
If G is PR, $\lim_{k \to \infty} |\text{Fix}(S^{kp}, F)| e^{-kp h(S)} = p$

Counter-examples

Without restricting to a finite set of vertices:
- $\text{Fix}(S^{kp}, G)$ can be infinite
- $\text{Fix}(S^{kp}, G)$ can be finite but grow arbitrarily fast
Markov shifts – periodic points

Markov shift $S : X \to X$ defined by graph G
Assume transitive with $h(S) < \infty$ and period p

Classical positive matrix theory yields:

Theorem

$[F] := \{x \in X : x_0 \in F\}$ for some finite set $F \neq \emptyset$ of vertices of G
Fix$(S^i, F) := \{x \in X : S^i x = x$ and $O(x) \cap [F] \neq \emptyset\}$
If G is not PR, $\lim_{k \to \infty} |\text{Fix}(S^{kp}, F)| e^{-kp h(S)} = 0$
If G is PR, $\lim_{k \to \infty} |\text{Fix}(S^{kp}, F)| e^{-kp h(S)} = p$

Counter-examples

Without restricting to a finite set of vertices:
- $\text{Fix}(S^{kp}, G)$ can be infinite
- $\text{Fix}(S^{kp}, G)$ can be finite but grow arbitrarily fast
Markov shifts – periodic points

Markov shift $S : X \rightarrow X$ defined by graph G
Assume **transitive** with $h(S) < \infty$ and period p

Classical positive matrix theory yields:

Theorem

\[[F] := \{ x \in X : x_0 \in F \} \text{ for some finite set } F \neq \emptyset \text{ of vertices of } G \]
\[\text{Fix}(S^i, F) := \{ x \in X : S^i x = x \text{ and } O(x) \cap [F] \neq \emptyset \} \]
If G is not PR, $\lim_{k \to \infty} |\text{Fix}(S^{kp}, F)| e^{-kp h(S)} = 0$
If G is PR, $\lim_{k \to \infty} |\text{Fix}(S^{kp}, F)| e^{-kp h(S)} = p$

Counter-examples

Without restricting to a finite set of vertices
- $\text{Fix}(S^{kp}, G)$ can be infinite
- $\text{Fix}(S^{kp}, G)$ can be finite but grow arbitrarily fast
Markov shifts – periodic points

Markov shift $S: X \to X$ defined by graph G
Assume **transitive** with $h(S) < \infty$ and period p

Classical positive matrix theory yields:

Theorem

$[F] := \{x \in X : x_0 \in F\}$ for some finite set $F \neq \emptyset$ of vertices of G

$\text{Fix}(S^j, F) := \{x \in X : S^j x = x \text{ and } O(x) \cap [F] \neq \emptyset\}$

If G is not PR, $\lim_{k \to \infty} \left| \text{Fix}(S^{kp}, F) \right| e^{-kp \cdot h(S)} = 0$

If G is PR, $\lim_{k \to \infty} \left| \text{Fix}(S^{kp}, F) \right| e^{-kp \cdot h(S)} = p$

Counter-examples

Without restricting to a finite set of vertices:

- $\text{Fix}(S^{kp}, G)$ can be infinite
- $\text{Fix}(S^{kp}, G)$ can be finite but grow arbitrarily fast
Factors of Markov shifts – pathology from loss of entropy

\((X, S), (Y, T)\) selfmaps

Definition

A **factor map** \(\pi : (X, S) \rightarrow (Y, T)\) is an onto map \(\pi : X \rightarrow Y\) with \(\pi \circ S = T \circ \pi\)

\(S : X \rightarrow X\) is called the extension and \(T : Y \rightarrow Y\) the factor

Claim: Without additional assumptions, their factors can be very different

Pathology 1 Bad MMEs

MMEs of Markov shifts

A Markov shift has at most countably many mme’s and each is periodic-Bernoulli (*1)

Counter-example of Boyle-B

There are continuous factors of mixing SFTs whose mme’s include *uncountably* many isomorphic copies of an *arbitrary ergodic automorphism* with positive entropy

Remark (Sarig, applying Ornstein’s theory)

Any finite-to-one, \(C^0\) factor of a Markov shift satisfies (*1)
Factors of Markov shifts – pathology from loss of entropy

$(X, S), (Y, T)$ selfmaps

Definition

A **factor map** $\pi : (X, S) \to (Y, T)$ is an onto map $\pi : X \to Y$ with $\pi \circ S = T \circ \pi$

$S : X \to X$ is called the extension and $T : Y \to Y$ the factor

Claim: Without additional assumptions, their factors can be very different

Pathology 1 Bad MMEs

MMEs of Markov shifts

A Markov shift has at most countably many mme’s and each is periodic-Bernoulli (*1)

Counter-example of Boyle-B

There are continuous factors of mixing SFTs whose mme’s include *uncountably* many isomorphic copies of an *arbitrary ergodic automorphism* with positive entropy

Remark (Sarig, applying Ornstein’s theory)

Any finite-to-one, C^0 factor of a Markov shift satisfies (*1)
Factors of Markov shifts – pathology from loss of entropy

\((X, S), (Y, T)\) selfmaps

Definition

A factor map \(\pi : (X, S) \to (Y, T)\) is an onto map \(\pi : X \to Y\) with \(\pi \circ S = T \circ \pi\)

\(S : X \to X\) is called the extension and \(T : Y \to Y\) the factor

Claim: Without additional assumptions, their factors can be very different

Pathology 1 Bad MMEs

MMEs of Markov shifts

A Markov shift has at most countably many mme’s and each is periodic-Bernoulli (*)

Counter-example of Boyle-B

There are continuous factors of mixing SFTs whose mme’s include uncountably many isomorphic copies of an arbitrary ergodic automorphism with positive entropy

Remark (Sarig, applying Ornstein’s theory)

Any finite-to-one, \(C^0\) factor of a Markov shift satisfies (*)
Factors of Markov shifts – pathology from loss of entropy

\((X, S), (Y, T)\) selfmaps

Definition

A **factor map** \(\pi : (X, S) \to (Y, T)\) is an onto map \(\pi : X \to Y\) with \(\pi \circ S = T \circ \pi\)

\(S : X \to X\) is called the extension and \(T : Y \to Y\) the factor

Claim: Without additional assumptions, their factors can be very different

Pathology 1 Bad MMEs

MMEs of Markov shifts

A Markov shift has at most countably many mme’s and each is periodic-Bernoulli (*1)

Counter-example of Boyle-B

There are continuous factors of mixing SFTs whose mme’s include *uncountably* many isomorphic copies of an *arbitrary ergodic automorphism* with positive entropy

Remark (Sarig, applying Ornstein’s theory)

Any finite-to-one, \(C^0\) factor of a Markov shift satisfies (*1)
Factors of Markov shifts – pathology from loss of entropy

\((X, S), (Y, T)\) selfmaps

Definition

A **factor map** \(\pi : (X, S) \to (Y, T) \) is an onto map \(\pi : X \to Y \) with \(\pi \circ S = T \circ \pi \)

\(S : X \to X \) is called the extension and \(T : Y \to Y \) the factor

Claim: Without additional assumptions, their factors can be very different

Pathology 1 Bad MMEs

MMEs of Markov shifts

A Markov shift has at most countably many mme’s and each is periodic-Bernoulli (*1)

Counter-example of Boyle-B

There are continuous factors of mixing SFTs whose mme’s include *uncountably* many isomorphic copies of an *arbitrary ergodic automorphism* with positive entropy

Remark (Sarig, applying Ornstein’s theory)

Any finite-to-one, \(C^0 \) factor of a Markov shift satisfies (*1)
Pathology 2 Finite-to-one factors can still be bad "at a period"

μ totally ergodic \iff $\text{Per}(S, \mu) = \{1\}$

Counter-example of Boyle-B

There is a finite-to-one, continuous factor of an SFT which has a unique totally ergodic measure with nonzero entropy

Compare:

Remark

A Markov shift has infinitely many totally ergodic measures with nonzero entropy, or none
Factors of Markov shifts – pathology of finite-to-one factors

Pathology 2 Finite-to-one factors can still be bad "at a period"

\[\mu \text{ totally ergodic } \iff \text{Per}(S, \mu) = \{1\} \]

Counter-example of Boyle-B

There is a finite-to-one, continuous factor of an SFT which has a unique totally ergodic measure with nonzero entropy

Remark

A Markov shift has infinitely many totally ergodic measures with nonzero entropy, or none
The Bowen relation

\(\pi : (X, S) \to (Y, T) \) factor map with

- \((X, S)\) a symbolic system: \(X \subset A^\mathbb{Z} \) and \(S : (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}} \)
- \((Y, T)\) arbitrary

Let \([a] := \{ x \in X : x_0 = a \}\) for \(a \in A \)

Bowen relation (Boyle-B)

The **Bowen relation** of \(\pi \) is the symmetric relation over \(A \) defined by:

\[a \sim b \iff \pi([a]) \cap \pi([b]) \neq \emptyset \]

It is of **finite type** if \(|\{ b \in A : a \sim b \}| < \infty\) for each \(a \in A \)

The factor \(\pi : X \to Y \) has the **Bowen property** if, for all \(x, x' \in X \)

\[\pi(x) = \pi(x') \iff \forall n \in \mathbb{Z} \ x_n \sim x'_n \]

Recall Bowen **On Axiom A diffeomorphisms (1978):**

We will now discuss the quotient map \(\pi : \Sigma_A \to \Omega_i \) defined by \(\pi(x) = \bigcap_{j=-\infty}^{\infty} \bigcup_{j=-\infty}^{n} R_{x_j} \).

The Markov partition \(\mathcal{C} = \{ R_1, \ldots, R_n \} \) is taken so that \(2 \max_{1 \leq j \leq n} \text{diam}(R_j) \) is less than an expansive constant. Define a relation \(\sim \) on \(\{1, \ldots, n\} \) by \(j \sim k \) iff \(R_j \cap R_k \neq \emptyset \). Define \(\sim \) on \(\Sigma_A \) by \(x \sim y \) iff \(x_r \sim y_r \), \(\forall r \in \mathbb{Z} \). It is easy to prove that \(\pi(x) = \pi(y) \) precisely if \(x \sim y \).
The Bowen relation

\[\pi : (X, S) \to (Y, T) \] factor map with

\((X, S) \) a symbolic system: \(X \subset \mathcal{A}^\mathbb{Z} \) and \(S : (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}} \)

\((Y, T) \) arbitrary

Let \([a] := \{ x \in X : x_0 = a \} \) for \(a \in \mathcal{A} \)

Bowen relation (Boyle-B)

The **Bowen relation** of \(\pi \) is the symmetric relation over \(\mathcal{A} \) defined by:

\[a \sim b \iff \pi([a]) \cap \pi([b]) \neq \emptyset \]

It is of finite type if \(|\{ b \in \mathcal{A} : a \sim b \}| < \infty \) for each \(a \in \mathcal{A} \)

The factor \(\pi : X \to Y \) has the **Bowen property** if, for all \(x, x' \in X \)

\[\pi(x) = \pi(x') \iff \forall n \in \mathbb{Z} \ x_n \sim x'_n \]

Recall Bowen On Axiom A diffeomorphisms (1978):

We will now discuss the quotient map \(\pi : \Sigma_A \to \Omega \), defined by \(\pi(x) = \bigcap_{j=-\infty}^{\infty} R_{x_j}^{-j} \).

The Markov partition \(\mathcal{C} = \{ R_1, \ldots, R_n \} \) is taken so that \(2 \max_{1 \leq j \leq n} \text{diam}(R_j) \) is less than an expansive constant. Define a relation \(\sim \) on \(\{1, \ldots, n\} \) by \(j \sim k \) iff \(R_j \cap R_k \neq \emptyset \). Define \(\sim \) on \(\Sigma_A \) by \(x \sim y \) iff \(x_r \sim y_r \), \(\forall r \in \mathbb{Z} \). It is easy to prove that \(\pi(x) = \pi(y) \) precisely if \(x \sim y \).
The Bowen relation

\[\pi : (X, S) \rightarrow (Y, T) \] factor map with

\((X, S)\) a symbolic system: \(X \subset \mathcal{A}^{\mathbb{Z}}\) and \(S : (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}\)

\((Y, T)\) arbitrary

Let \([a] := \{ x \in X : x_0 = a \}\) for \(a \in \mathcal{A}\)

Bowen relation (Boyle-B)

The **Bowen relation** of \(\pi\) is the symmetric relation over \(\mathcal{A}\) defined by:

\[a \sim b \iff \pi([a]) \cap \pi([b]) \neq \emptyset \]

It is of **finite type** if \(|\{ b \in \mathcal{A} : a \sim b \}| < \infty\) for each \(a \in \mathcal{A}\)

The factor \(\pi : X \rightarrow Y\) has the **Bowen property** if, for all \(x, x' \in X\)

\[\pi(x) = \pi(x') \iff \forall n \in \mathbb{Z} \quad x_n \sim x'_n \]

Recall Bowen On Axiom A diffeomorphisms (1978):

We will now discuss the quotient map \(\pi : \Sigma A \rightarrow \Omega_i\) defined by \(\pi(x) = \bigcap_{j = -\infty}^{\infty} F^{-j} R_{x_j}\).

The Markov partition \(\mathcal{C} = \{ R_1, \ldots, R_n \}\) is taken so that \(2 \max_{1 \leq j \leq n} \text{diam}(R_j)\) is less than an expansive constant. Define a relation \(\sim\) on \(\{1, \ldots, n\}\) by \(j \sim k\) iff \(R_j \cap R_k \neq \emptyset\). Define \(\approx\) on \(\Sigma A\) by \(x \approx y\) iff \(x_r \sim y\), \(\forall r \in \mathbb{Z}\). It is easy to prove that \(\pi(x) = \pi(y)\) precisely if \(x \approx y\).
The Bowen relation

\(\pi : (X, S) \rightarrow (Y, T) \) factor map with

- \((X, S)\) a symbolic system: \(X \subset \mathcal{A}^\mathbb{Z} \) and \(S : (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}} \)
- \((Y, T)\) arbitrary

Let \([a] := \{x \in X : x_0 = a\}\) for \(a \in \mathcal{A}\)

Bowen relation (Boyle-B)

The **Bowen relation** of \(\pi\) is the symmetric relation over \(\mathcal{A}\) defined by:

\[a \sim b \iff \pi([a]) \cap \pi([b]) \neq \emptyset \]

It is of **finite type** if \(|\{b \in \mathcal{A} : a \sim b\}| < \infty\) for each \(a \in \mathcal{A}\)

The factor \(\pi : X \rightarrow Y\) has the **Bowen property** if, for all \(x, x' \in X\)

\[\pi(x) = \pi(x') \iff \forall n \in \mathbb{Z} \ x_n \sim x'_n \]

We will now discuss the quotient map \(\pi : \Sigma_A \to \Omega_i\) defined by \(\pi(x) = \bigcap_{j=-\infty}^{\infty} -jR_{x_j}\).

The Markov partition \(\mathcal{C} = \{R_1, \ldots, R_n\}\) is taken so that \(2 \max_{1 \leq j \leq n} \text{diam}(R_j)\) is less than an expansive constant. Define a relation \(\sim\) on \(\{1, \ldots, n\}\) by \(j \sim k\) iff \(R_j \cap R_k \neq \emptyset\). Define \(\sim\) on \(\Sigma_A\) by \(x \sim y\) iff \(x_r \sim y, \forall r \in \mathbb{Z}\). It is easy to prove that \(\pi(x) = \pi(y)\) precisely if \(x \sim y\).
The Bowen relation

\[\pi : (X, S) \to (Y, T) \text{ factor map with } \]
\[(X, S) \text{ a symbolic system: } X \subset \mathcal{A}^\mathbb{Z} \text{ and } S : (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}} \]
\[(Y, T) \text{ arbitrary} \]

Let \([a] := \{ x \in X : x_0 = a \} \) for \(a \in \mathcal{A} \)

Bowen relation (Boyle-B)

The **Bowen relation** of \(\pi \) is the symmetric relation over \(\mathcal{A} \) defined by:

\[a \sim b \iff \pi([a]) \cap \pi([b]) \neq \emptyset \]

It is of **finite type** if \(|\{ b \in \mathcal{A} : a \sim b \}| < \infty \) for each \(a \in \mathcal{A} \)

The factor \(\pi : X \to Y \) has the **Bowen property** if, for all \(x, x' \in X \)

\[\pi(x) = \pi(x') \iff \forall n \in \mathbb{Z} \ x_n \sim x'_n \]

We will now discuss the quotient map \(\pi : \Sigma_A \to \Omega_i \) defined by \(\pi(\underline{x}) = \bigcap_{j = -\infty}^{\infty} f^{-j}R_{x_j} \).

The Markov partition \(\mathcal{C} = \{ R_1, \ldots, R_n \} \) is taken so that \(2 \max_{1 \leq j \leq n} \text{diam}(R_j) \) is less than an expansive constant. Define a relation \(\sim \) on \(\{1, \ldots, n\} \) by \(j \sim k \iff R_j \cap R_k \neq \emptyset \). Define \(\underline{x} \sim \underline{y} \iff x_r \sim y, \forall r \in \mathbb{Z} \). It is easy to prove that \(\pi(\underline{x}) = \pi(\underline{y}) \) precisely if \(\underline{x} \sim \underline{y} \).
Bowen factors of finite type

Examples

1. The coding of an Axiom A diffeomorphism induced by Markov partitions defines a finite-to-one Bowen factor

2. Expansive continuous factors, in particular of SFTs (ie, Fried’s finitely presented systems)

3. Any one-block code between two symbolic systems is a Bowen factor. Note: need not preserve entropy, even if of finite type.

#-recurrent set (Sarig)

\(X^\# \) is the set of \(x \in X \) s.t. \(|\{ n \leq 0 : x_n = a \}| = |\{ n \geq 0 : x_n = b \}| = \infty \) for some \(a, b \)

Theorem (Sarig)

Given a surface \(C^{1+}\)-diffeomorphism, and \(\chi > 0 \), let \(\pi_\chi : X_\chi \to M_\chi \) be Sarig’s Hölder continuous factor map with \(X_\chi \) a Markov shift and \(M_\chi \) its \(\chi \)-hyperbolic part \(\pi_\chi \) restricted to \(X^\#_\chi \) is finite-to-one and a Bowen factor of finite type (Boyle-B)
Bowen factors of finite type

Examples

1. The coding of an Axiom A diffeomorphism induced by Markov partitions defines a finite-to-one Bowen factor

2. Expansive continuous factors, in particular of SFTs (i.e., Fried’s finitely presented systems)

3. Any one-block code between two symbolic systems is a Bowen factor. Note: need not preserve entropy, even if of finite type.

#-recurrent set (Sarig)

$X^\#$ is the set of $x \in X$ s.t. $|\{n \leq 0 : x_n = a\}| = |\{n \geq 0 : x_n = b\}| = \infty$ for some a, b

Theorem (Sarig)

Given a surface C^{1+}-diffeomorphism, and $\chi > 0$, let $\pi_\chi : X_\chi \to M_\chi$ be Sarig’s Hölder continuous factor map with X_χ a Markov shift and M_χ its χ-hyperbolic part. π_χ restricted to $X^\#_\chi$ is finite-to-one and a Bowen factor of finite type (Boyle-B)
Bowen factors of finite type

Examples

1. The coding of an Axiom A diffeomorphism induced by Markov partitions defines a finite-to-one Bowen factor

2. Expansive continuous factors, in particular of SFTs (i.e., Fried’s finitely presented systems)

3. Any one-block code between two symbolic systems is a Bowen factor.
 Note: need not preserve entropy, even if of finite type.

#-recurrent set (Sarig)

$X^\#$ is the set of $x \in X$ s.t. $|\{n \leq 0 : x_n = a\}| = |\{n \geq 0 : x_n = b\}| = \infty$ for some a, b

Theorem (Sarig)

Given a surface C^{1+}-diffeomorphism, and $\chi > 0$, let $\pi_\chi : X_\chi \to M_\chi$ be Sarig’s Hölder continuous factor map with X_χ a Markov shift and M_χ its χ-hyperbolic part.

π_χ restricted to $X_\chi^\#$ is finite-to-one and a Bowen factor of finite type (Boyle-B)
Bowen factors of finite type

Examples

1. The coding of an Axiom A diffeomorphism induced by Markov partitions defines a finite-to-one Bowen factor

2. Expansive continuous factors, in particular of SFTs (ie, Fried's finitely presented systems)

3. Any one-block code between two symbolic systems is a Bowen factor. Note: need not preserve entropy, even if of finite type.

#$-recurrent set (Sarig)

$X^\#$ is the set of $x \in X$ s.t. $|\{n \leq 0 : x_n = a\}| = |\{n \geq 0 : x_n = b\}| = \infty$ for some a, b

Theorem (Sarig)

Given a surface C^{1+}-diffeomorphism, and $\chi > 0$, let $\pi_\chi : X_\chi \to M_\chi$ be Sarig’s Hölder continuous factor map with X_χ a Markov shift and M_χ its χ-hyperbolic part π_χ restricted to $X^\#$ is finite-to-one and a Bowen factor of finite type (Boyle-B)
Bowen factors of finite type

Examples
1. The coding of an Axiom A diffeomorphism induced by Markov partitions defines a finite-to-one Bowen factor.
2. Expansive continuous factors, in particular of SFTs (i.e., Fried’s finitely presented systems).
3. Any one-block code between two symbolic systems is a Bowen factor. Note: need not preserve entropy, even if of finite type.

#-recurrent set (Sarig)

$X^\#$ is the set of $x \in X$ s.t. $|\{n \leq 0 : x_n = a\}| = |\{n \geq 0 : x_n = b\}| = \infty$ for some a, b

Theorem (Sarig)

Given a surface C^{1+}-diffeomorphism, and $\chi > 0$, let $\pi_\chi : X_\chi \rightarrow M_\chi$ be Sarig’s Hölder continuous factor map with X_χ a Markov shift and M_χ its χ-hyperbolic part. π_χ restricted to $X_\chi^\#$ is finite-to-one and a Bowen factor of finite type (Boyle-B).
Almost Borel conjugacy to a Markov shift

(X, S) a Markov shift and $(X_i)_{i \in I}$ be its spectral decomposition

Theorem (Boyle-B)

Let $\pi: (X, S) \to (Y, T)$ be a Borel factor of a Markov shift with $h(S) < \infty$

Assume for all $i \in I$: the restriction $\pi|_{X_i^\#}$ is finite-to-one with the Bowen property

Then (Y, T) is almost Borel conjugate modulo zero entropy to a Markov shift

Main ingredients of the proof

- Hochman’s almost Borel generator theorem
- Countable unions of Markov shifts are almost Borel conjugate to Markov shifts, etc.
- Low entropy part (injectivity from marker lemma)
- Top entropy part (a.e. injectivity a la Manning)

Theorem (Boyle-B)

Any C^{1+}-diffeomorphism of a compact surface is almost Borel conjugate mod zero entropy to a Markov shift
Almost Borel conjugacy to a Markov shift

(X, S) a Markov shift and $(X_i)_{i \in I}$ be its spectral decomposition

Theorem (Boyle-B)

Let $\pi : (X, S) \to (Y, T)$ be a Borel factor of a Markov shift with $h(S) < \infty$

Assume for all $i \in I$: the restriction $\pi|_{X_i^{\#}}$ is finite-to-one with the Bowen property

Then (Y, T) is almost Borel conjugate modulo zero entropy to a Markov shift

Main ingredients of the proof

- Hochman's almost Borel generator theorem
- Countable unions of Markov shifts are almost Borel conjugate to Markov shifts, etc.
- Low entropy part (injectivity from marker lemma)
- Top entropy part (a.e. injectivity a la Manning)

Theorem (Boyle-B)

Any C^{1+}-diffeomorphism of a compact surface is almost Borel conjugate mod zero entropy to a Markov shift
Almost Borel conjugacy to a Markov shift

\((X, S)\) a Markov shift and \((X_i)_{i \in I}\) be its spectral decomposition

Theorem (Boyle-B)

Let \(\pi : (X, S) \to (Y, T)\) be a Borel factor of a Markov shift with \(h(S) < \infty\)

Assume for all \(i \in I\): the restriction \(\pi|_{X_i}\) is finite-to-one with the Bowen property

Then \((Y, T)\) is almost Borel conjugate modulo zero entropy to a Markov shift

Main ingredients of the proof

- Hochman’s almost Borel generator theorem
- Countable unions of Markov shifts are almost Borel conjugate to Markov shifts, etc.
- Low entropy part (injectivity from marker lemma)
- Top entropy part (a.e. injectivity a la Manning)

Theorem (Boyle-B)

Any \(C^{1+}\)-diffeomorphism of a compact surface is almost Borel conjugate mod zero entropy to a Markov shift
Almost Borel conjugacy to a Markov shift

(X, S) a Markov shift and $(X_i)_{i \in I}$ be its spectral decomposition

Theorem (Boyle-B)

Let $\pi : (X, S) \to (Y, T)$ be a Borel factor of a Markov shift with $h(S) < \infty$

Assume for all $i \in I$: the restriction $\pi|_{X_i^\#}$ is finite-to-one with the Bowen property

Then (Y, T) is almost Borel conjugate modulo zero entropy to a Markov shift

Main ingredients of the proof

- Hochman’s almost Borel generator theorem
- Countable unions of Markov shifts are almost Borel conjugate to Markov shifts, etc.
- Low entropy part (injectivity from marker lemma)
- Top entropy part (a.e. injectivity a la Manning)

Theorem (Boyle-B)

Any C^{1+}-diffeomorphism of a compact surface is almost Borel conjugate mod zero entropy to a Markov shift
Almost Borel classification of C^{1+}-diffeos

We are reduced to the classification of Markov shifts (Boyle-B)

We need the set of periods of a measure

\[\text{Per}(f, \mu) := \{ p \geq 1 : e^{2i\pi/p} \in \sigma_{\text{rat}}(f, \mu) \} \text{ for } \mu \in \mathbb{P}_{\text{erg}}(f, \mu) \]

and to maximize entropy at a period:

Corollary (Boyle-B)

For each $p \geq 1$ let:

- $H(p) := \sup^+ \{ h(f, \mu) : \mu \in \mathbb{P}_{\text{erg}}(f), \max \text{Per}(f, \mu) | p \}$
- $M(p) := |\{ \mu \in \mathbb{P}_{\text{erg}}(f) : \max \text{Per}(f, \mu) = p, h(f, \mu) = H(p) \}|$

Then (H, M) is a complete invariant of almost Borel conjugacy mod zero entropy among C^{1+}-diffeomorphisms f of compact surfaces
Almost Borel classification of C^{1+}-diffeos

We are reduced to the classification of Markov shifts (Boyle-B)

We need the set of periods of a measure

$$\text{Per}(f, \mu) := \{ p \geq 1 : e^{2i\pi/p} \in \sigma_{\text{rat}}(f, \mu) \}$$

for $\mu \in \mathbb{P}_{\text{erg}}(f, \mu)$

and to maximize entropy at a period

Corollary (Boyle-B)

For each $p \geq 1$ let:

- $H(p) := \sup^+ \{ h(f, \mu) : \mu \in \mathbb{P}_{\text{erg}}(f), \max \text{Per}(f, \mu) \mid p \}$
- $M(p) := |\{ \mu \in \mathbb{P}_{\text{erg}}(f) : \max \text{Per}(f, \mu) = p, h(f, \mu) = H(p) \}|$

Then (H, M) is a complete invariant of almost Borel conjugacy mod zero entropy among C^{1+}-diffeomorphisms f of compact surfaces
Almost Borel classification of C^{1+}-diffeos

We are reduced to the classification of Markov shifts (Boyle-B)

We need the set of periods of a measure

$$\text{Per}(f, \mu) := \{p \geq 1 : e^{2i\pi/p} \in \sigma_{\text{rat}}(f, \mu)\} \text{ for } \mu \in \mathbb{P}_{\text{erg}}(f, \mu)$$

and to maximize entropy at a period:

Corollary (Boyle-B)

For each $p \geq 1$ let:

- $H(p) := \sup^+ \{h(f, \mu) : \mu \in \mathbb{P}_{\text{erg}}(f), \ max \ \text{Per}(f, \mu) | p\}$
- $M(p) := |\{\mu \in \mathbb{P}_{\text{erg}}(f) : \max \ \text{Per}(f, \mu) = p, \ h(f, \mu) = H(p)\}|$

Then (H, M) is a complete invariant of almost Borel conjugacy mod zero entropy among C^{1+}-diffeomorphisms f of compact surfaces
Almost Borel classification for C^∞ diffeos

A C^∞-diffeo of a compact surface with $h_{\text{top}}(f) > 0$: purely topological invariant

Definition

The homoclinic class of a hyperbolic periodic orbit O is

$$HC(O) := W^s(O) \cap W^u(O)$$

It has period $p \geq 1$ if $HC(O) = \bigcup_{k=0}^{p-1} f^k(A)$ and

$$\text{int}_{HC(O)}(A \cap f^k(A)) = \emptyset$$

for $0 < k < p$ and $f^p : A \to A$ topologically mixing.

Corollary of B-Crovisier-Sarig

Let $(HC(O_j))_{j \in J}$ be the distinct homoclinic classes and p_j their periods.

The previous complete invariant (H, M) of almost Borel conjugacy mod zero entropy satisfies

- $H(p) := \sup_{j:p_j|p} h_{\text{top}}(f, HC(O_j))$
- $M(p) := |\{j \in J : h_{\text{top}}(f, HC(O_j)) = H(p), p_j = p\}|$

Example

Among top. mixing surface C^∞ diffeos, the topological entropy is a complete invariant for almost Borel conjugacy mod zero entropy (in fact Borel conjugacy mod periodic points).
Almost Borel classification for C^∞ diffeos

f C^∞-diffeo of a compact surface with $h_{\text{top}}(f) > 0$: purely topological invariant

Definition

The **homoclinic class** of a hyperbolic periodic orbit O is

$$HC(O) := W^s(O) \cap W^u(O)$$

It has period $p \geq 1$ if $HC(O) = \bigcup_{k=0}^{p-1} f^k(A)$ and

$$\text{int}_{HC(O)}(A \cap f^k(A)) = \emptyset$$

for $0 < k < p$ and $f^p : A \to A$ topologically mixing

Corollary of B-Crovisier-Sarig

Let $(HC(O_j))_{j \in J}$ be the distinct homoclinic classes and p_j their periods

The previous complete invariant (H, M) of almost Borel conjugacy mod zero entropy satisfies

- $H(p) := \sup_{j: p_j = p}^+ h_{\text{top}}(f, HC(O_j))$
- $M(p) := |\{j \in J : h_{\text{top}}(f, HC(O_j)) = H(p), p_j = p\}|$

Example

Among top. mixing surface C^∞ diffeos, the topological entropy is a complete invariant for almost Borel conjugacy mod zero entropy (in fact Borel conjugacy mod periodic points)
Almost Borel classification for C^∞ diffeos

f C^∞-diffeo of a compact surface with $h_{\text{top}}(f) > 0$: purely topological invariant

Definition

The **homoclinic class** of a hyperbolic periodic orbit O is

$$HC(O) := W^s(O) \cap W^u(O)$$

It has **period** $p \geq 1$ if $HC(O) = \bigcup_{k=0}^{p-1} f^k(A)$ and

$$\text{int}_{HC(O)}(A \cap f^k(A)) = \emptyset$$

for $0 < k < p$ and $f^p : A \to A$ topologically mixing.

Corollary of B-Crovisier-Sarig

Let $(HC(O_j))_{j \in J}$ be the distinct homoclinic classes and p_j their periods.

The previous complete invariant (H, M) of almost Borel conjugacy mod zero entropy satisfies

- $H(p) := \sup_{j:p_j | p} h_{\text{top}}(f, HC(O_j))$
- $M(p) := |\{j \in J : h_{\text{top}}(f, HC(O_j)) = H(p), p_j = p\}|$

Example

Among top. mixing surface C^∞ diffeos, the topological entropy is a complete invariant for almost Borel conjugacy mod zero entropy (in fact Borel conjugacy mod periodic points).
Almost Borel classification for C^∞ diffeos

A C^∞-diffeo of a compact surface with $h_{\text{top}}(f) > 0$: purely topological invariant

Definition

The homoclinic class of a hyperbolic periodic orbit O is

$$HC(O) := W^s(O) \cap W^u(O)$$

It has period $p \geq 1$ if $HC(O) = \bigcup_{k=0}^{p-1} f^k(A)$ and

$$\text{int}_{HC(O)}(A \cap f^k(A)) = \emptyset$$

for $0 < k < p$ and $f^p : A \to A$ topologically mixing

Corollary of B-Crovisier-Sarig

Let $(HC(O_j))_{j \in J}$ be the distinct homoclinic classes and p_j their periods

The previous complete invariant (H, M) of almost Borel conjugacy mod zero entropy satisfies

- $H(p) := \sup_{j : p_j | p} h_{\text{top}}(f, HC(O_j))$
- $M(p) := |\{j \in J : h_{\text{top}}(f, HC(O_j)) = H(p), p_j = p\}|$

Example

Among top. mixing surface C^∞ diffeos, the topological entropy is a complete invariant for almost Borel conjugacy mod zero entropy (in fact Borel conjugacy mod periodic points)
Lower bounds on periodic points

As for almost conjugacy between SFTs, we have *magic word isomorphisms*

Theorem (B, in preparation)

Let $\pi : (X, S) \to (Y, T)$ be a Borel factor of a transitive Markov shift with $h(T) < \infty$

Assume the restriction $\pi|_{X^\#}$ is finite-to-one and a Bowen factor of finite type

Then \exists X-word w s.t. $X_w := \{ x \in X : w \text{ occurs i.o. in the past and future} \}$ satisfies:

$$\exists 1 \leq d < \infty \ \forall x \in X_w \ |\pi^{-1}(\pi(x)) \cap X_w| = d$$

Proof: $\deg_\pi(v_1 \ldots v_n, i) := |\{ u_i : u \in A^n, \ u_1 \sim v_1, \ldots, u_n \sim v_n \}|$

Theorem (B)

Let f be a C^∞-diffeomorphism of a compact surface and $0 < \chi < h_{\text{top}}(f)$

Let μ_1, \ldots, μ_r be its mme’s, with μ_i isomorphic to Bernoulli $\times \mathbb{Z}/p_i\mathbb{Z}$

Let $p := \text{lcm}(p_1, \ldots, p_r)$

$$\lim_{n \to \infty, p|n} \left| \{ x \in M : f^n x = x, \ \chi\text{-hyperbolic} \} \right| e^{-nh_{\text{top}}(f)} \geq p_1 + \cdots + p_r$$
Lower bounds on periodic points

As for almost conjugacy between SFTs, we have *magic word isomorphisms*

Theorem (B, in preparation)

Let \(\pi : (X, S) \to (Y, T) \) be a Borel factor of a transitive Markov shift with \(h(T) < \infty \)

Assume the restriction \(\pi|X^\# \) is finite-to-one and a Bowen factor of finite type

Then \(\exists \) \text{X-word } w \text{ s.t. } X_w := \{ x \in X : w \text{ occurs i.o. in the past and future} \} \text{ satisfies:} \[
\exists 1 \leq d < \infty \ \forall x \in X_w \ |\pi^{-1}(\pi(x)) \cap X_w| = d
\]

Proof: \(\deg_\pi(v_1 \ldots v_n, i) := |\{ u_i : u \in \mathcal{A}^n, \ u_1 \sim v_1, \ldots, u_n \sim v_n \}| \)

Theorem (B)

Let \(f \) be a \(C^\infty \)-diffeomorphism of a compact surface and \(0 < \chi < h_{\text{top}}(f) \)

Let \(\mu_1, \ldots, \mu_r \) be its mme’s, with \(\mu_i \) isomorphic to Bernoulli\(\times \mathbb{Z}/p_i\mathbb{Z} \)

Let \(p := \text{lcm}(p_1, \ldots, p_r) \)

\[
\lim_{n \to \infty, p|n} |\{ x \in M : f^n x = x, \ \chi\text{-hyperbolic} \}| e^{-nh_{\text{top}}(f)} \geq p_1 + \cdots + p_r
\]
Lower bounds on periodic points

As for almost conjugacy between SFTs, we have *magic word isomorphisms*

Theorem (B, in preparation)

Let \(\pi : (X, S) \rightarrow (Y, T) \) be a Borel factor of a transitive Markov shift with \(h(T) < \infty \)

Assume the restriction \(\pi|X^\# \) is finite-to-one and a Bowen factor of finite type

Then \(\exists \) \(X \)-word \(w \) s.t. \(X_w := \{ x \in X : w \text{ occurs i.o. in the past and future} \} \) satisfies:

\[\exists 1 \leq d < \infty \ \forall x \in X_w \ |\pi^{-1}(\pi(x)) \cap X_w| = d \]

Proof: \(\deg_{\pi}(v_1 \ldots v_n, i) := |\{ u_i : u \in A^n, \ u_1 \sim v_1, \ldots, u_n \sim v_n \}| \)

Theorem (B)

Let \(f \) be a \(C^\infty \)-diffeomorphism of a compact surface and \(0 < \chi < h_{\text{top}}(f) \)

Let \(\mu_1, \ldots, \mu_r \) be its mme’s, with \(\mu_i \) isomorphic to Bernoulli \(\times \ \mathbb{Z}/p_i\mathbb{Z} \)

Let \(p := \text{lcm}(p_1, \ldots, p_r) \)

\[\lim_{n \rightarrow \infty, \ p|n} |\{ x \in M : f^n x = x, \ \chi\text{-hyperbolic} \}| e^{-nh_{\text{top}}(f)} \geq p_1 + \cdots + p_r \]
Conclusion

The Bowen property gives good control of the (necessary?) failure of injectivity

Number of periodic points

Are there f compact surface C^∞-diffeo and $\chi > 0$ s.t.

$$\limsup_{n \to \infty} |\{x = f^n x, \chi\text{-hyperbolic}\}| e^{-n h_{\text{top}}(f)} = \infty?$$

True Borel conjugacy

For a C^∞-diffeo, each $HC(O)$ is almost Borel conjugate mod zero entropy to a transitive Markov shift

Can this be strengthened to almost Borel mod periodic points?

The dream coding

Is the (χ?)hyperbolic part of a surface diffeomorphism a factor of a Markov shift s.t.

1. the factor is Hölder-continuous
2. each "piece" (say homoclinic class) is coded by a single transitive component
3. the factor is 1-to-1 (wrt ergodic measures fully-supported on their "piece"?)
Conclusion

The Bowen property gives good control of the (necessary?) failure of injectivity

Number of periodic points

Are there f compact surface C^∞-diffeo and $\chi > 0$ s.t.

$$\limsup_{n \to \infty} \left| \{ x = f^n x, \chi\text{-hyperbolic} \} \mid e^{-nh_{\text{top}}(f)} = \infty \right|$$

True Borel conjugacy

For a C^∞-diffeo, each $HC(\mathcal{O})$ is almost Borel conjugate mod zero entropy to a transitive Markov shift

Can this be strengthened to almost Borel mod periodic points?

The dream coding

Is the (χ??)hyperbolic part of a surface diffeomorphism a factor of a Markov shift s.t.

1. the factor is Hölder-continuous
2. each "piece" (say homoclinic class) is coded by a single transitive component
3. the factor is 1-to-1 (wrt ergodic measures fully-supported on their "piece"??)
Conclusion

The Bowen property gives good control of the (necessary?) failure of injectivity

Number of periodic points

Are there f compact surface C^∞-diffeo and $\chi > 0$ s.t.
\[
\limsup_{n \to \infty} |\{x = f^n x, \chi\text{-hyperbolic}\}| e^{-n \text{top}(f)} = \infty?
\]

True Borel conjugacy

For a C^∞-diffeo, each $HC(\mathcal{O})$ is almost Borel conjugate mod zero entropy to a transitive Markov shift

Can this be strengthened to almost Borel mod periodic points?

The dream coding

Is the (χ??)hyperbolic part of a surface diffeomorphism a factor of a Markov shift s.t.

1. the factor is Hölder-continuous
2. each "piece" (say homoclinic class) is coded by a single transitive component
3. the factor is 1-to-1 (wrt ergodic measures fully-supported on their "piece"??)
Conclusion

The Bowen property gives good control of the (necessary?) failure of injectivity

Number of periodic points

Are there f compact surface C^∞-diffeo and $\chi > 0$ s.t.

$$\limsup_{n \to \infty} \left| \{ x = f^n x, \chi\text{-hyperbolic} \} \right| e^{-n \text{top}(f)} = \infty?$$

True Borel conjugacy

For a C^∞-diffeo, each $HC(\mathcal{O})$ is almost Borel conjugate mod zero entropy to a transitive Markov shift

Can this be strengthened to almost Borel mod periodic points?

The dream coding

Is the (χ??)hyperbolic part of a surface diffeomorphism a factor of a Markov shift s.t.

1. the factor is Hölder-continuous
2. each "piece" (say homoclinic class) is coded by a single transitive component
3. the factor is 1-to-1 (wrt ergodic measures fully-supported on their "piece"??)