Abstracts IGTC workshop at UBC, July 24-26, 2009

Author	Sandi Merchant <u>merchant@math.ubc.ca</u>
Title	Spatiotemporal patterns behind predator invasions in a model with
	non-local prey competition
Abstract	Reaction-diffusion systems are commonly used to model predator
	invasions on a spatial domain. In such models, the only spatial
	process is the diffusive movement of individuals and the interactions
	between individuals are assumed to be purely local. Here, I study a
	model where prey instead compete with each other over a spatial
	neighbourhood, and illustrate some of the effects this may have on a
	predator invasion, with particular focus on the spatiotemporal patterns
	that arise behind the invasion.

Author	Jaime Ashander <u>ashander@ualberta.ca</u>
Title	Pink salmon and sea lice as a host-parasite system with host age-
	structure: implications for salmon farming and chemical resistance
	development in lice
Abstract	Sea lice parasitize both wild salmon and sea-cage farm salmon.
	Outbreaks on farms can result in economic costs to aquaculture and
	spread to wild populations, raising serious conservation concerns. In
	many salmon-farming regions parasites are currently controlled via
	integrated pest management (IPM) strategies that rely on chemical
	treatment. Long-term effectiveness of chemical management requires
	understanding pest evolutionary response. These include resistance,
	which is likely influenced by connections between lice populations on
	wild and farm salmon. However, the coupled population dynamics of
	sea lice, farm salmon and wild salmon are not yet understood in
	sufficient detail to permit exploration of resistance-emergence. Here I
	present a step toward this understanding: a model for a host-parasite
	system of pink salmon and sea lice. I also describe model dynamics
	and steps toward validation and incorporation of farm salmon
	populations.

Author	Jennifer Lindquist jenl@uvic.ca
Title	A mathematical model of syringe-sharing partnerships and the
	transmission of blood-borne infections.
Abstract	Persons who use injection drugs (PWUID) in Victoria, BC were
	interviewed regarding injection equipment sharing practices. Survey
	data indicate that PWUID who share syringes do so with a single
	person; there are no concurrent sharing relationships. As long as an
	infectious individual's pairing is stable, infection does not spread to
	the population at large. When a partnership involving an infectious
	person ends, this individual may enter a fresh relationship; if the new
	partner is susceptible, disease transmission can occur. Here we
	formulate a model of pair formation and break-up dynamics, and
	model disease transmission within the constraints of the pairing

process. Analysis and parameters pertaining to the survey data are
presented.

Author	Jennifer Morrison morrison@math.ubc.ca
Title	Quantifying transient directed motion in single particle tracks using a
	hidden Markov model
Abstract	Single Particle Tracking (SPT) is a widely used biophysical technique
	whereby a biomembrane component is fluorescently or optically
	tagged and its trajectory is observed. Analysis of SPT data has led to
	investigations of the different modes of particle motion, the binding
	kinetics of specific proteins and the underlying structure of the
	plasma membrane. Quantification of a protein's interactions with the
	cytoskeleton and identification of directed motion provides insight
	into the spatiotemporal organization of the signaling pathways
	involved. I will present a method to identify transient directed motion
	in tracks of membrane-bound proteins using a hidden Markov model.
	As shown with simulated data, we can accurately estimate the
	diffusion coefficients and directed velocities of a particle in each state
	as well as the transition rates between each state. I will also discuss
	our attempts at analyzing particle tracks on T Cells using this method.

Author	Hannah Mckenzie <u>hmckenzie@math.ualberta.ca</u>
	(HW McKenzie, MA Lewis, and JT Jacobsen)
Title	R0 analysis of spatial population models
Abstract	It is often of interest for biological control and conservation purposes
	to know under what environmental conditions populations will persist
	or go extinct. One approach to studying such questions is through the
	basic reproductive number R0, which is defined as the expected
	number of offspring produced by an individual over its lifetime.
	Typically a threshold exists such that if $RO < 1$ the population will go
	extinct, while if $R0 > 1$ the population will persist. In this talk I will
	formulate an R0 for a spatiotemporal model for populations in
	streams. I will show how one can view R0 as the spectral radius of a
	certain operator and discuss the insights the model gives into
	population persistence in streams.

Author	Jiafen Gong* (jgong@math.ualberta.ca) and Thomas Hillen
Title	Mathematical Model for Optimizing Cancer Radiation Treatment
	Schedule
Abstract	In cancer radiation treatment planning, clinicians want to find an
	optimal schedule to kill as many cancer cells as possible while
	keeping the normal tissue damage at an acceptable level.
	Mathematical models to quantify cancer cell killing and normal tissue
	complication are needed for this optimization. In this talk, I mainly
	studied two pairs of models for regulating cancer cell killing and
	normal tissue complication, and want to use them to optimize realistic
	cancer radiotherapy treatment schedules in future. One approach is
	the total survival fraction for cancer killing and the cumulative
	radiation effect for normal tissue complication. The total survival

fraction is a deterministic model derived from cancer cell growth laws
and simple survival fraction models and the cumulative radiation
effect is obtained from data fitting. The other pair of models is
derived from birth-death processes: the tumor control probability and
the normal tissue complication probability.

Anthon	Instin Marleon innerlas Quellerte es
Author	Justin Marleau jnmarlea@ualberta.ca
Title	Early Plant Primary Succession on Mount St. Helens: Mechanisms
	and Mathematical Models
Abstract	Understanding the mechanisms such as facilitation, competition and
	dispersal limitation that control the rate and trajectory of primary
	succession can greatly aid in ecosystem rehabilitation. To explore
	how these mechanisms can drive successional dynamics, we devised
	stoichiometric ecosystem-level models that considered the role of
	nutrient limitation and dispersal ability in plant primary succession.
	We applied these models to the well-studied primary plant
	community on Mount St Helens to check the importance of the
	proposed mechanisms. Our results demonstrate that the most
	competitive plants within the community are nitrogen-limited and that
	the presence of a nitrogen-fixing legume, <i>Lupinus lepidus</i> , can greatly
	enhance community biomass at the local scale. The presence of
	<i>Lupinus</i> within the community is highly dependent on seed dispersal
	and the survival of these seeds. These results confirm suggestions
	from previous studies that the presence of Lupinus lepidus, which
	thereby removes nitrogen-limitation, can influence primary
	succession. This study suggests that competitive and facilitative
	effects of plants can be examined within the framework of
	stoichiometry.

Author	Shaun Strohm <u>shaun.strohm@gmail.com</u>
Title	Dispersal of Mountain Pine Beetle in Banff and Impacts of
	Management
Abstract	In this talk I will present a hybrid model for the Mountain Pine Beetle
	(MPB). The model is made up of diffusion and chemotaxis-based
	PDEs for the beetle flight period and discrete equations for the MPB
	overwintering stage. The model includes forest management activities
	such as tree baiting and removal of green attack trees. I will discuss
	the formation of beetle attack patterns in the PDE model. Ultimately,
	we wish to understand how the inclusion of management strategies
	alters the attack patterns of MPB. Lastly, I will discuss future
	research plans and how the model will be tested against data from
	Banff National Park.

Author	Ryan Lukeman@math.ubc.ca
Title	Linking Empirical Data to Modeling of Collective Motion in Animal
	Groups
Abstract	Many modeling studies have been presented to understand
	mechanisms of group formation and motion in animal groups. Yet,

trajectories of animals within large groups is complicated by a number of factors, limiting the available data, and thus, limiting model validation. In this talk, I'll describe our novel data set of flocks of a few hundred surf scoters swimming, for which we can entirely reconstruct individual trajectories. I'll then show how the empirical data can be synthesized to reveal structure within the data, providing a test for model validity. Using this test, we construct and optimize a self-propelled particle model from which we infer inter-individual interactions occurring between scoters.
without empirical data to validate these models, the proposed models remain purely hypothetical. Obtaining reliable data on positions and

Author	Vishaal Rajani vrajani@ualberta.ca
Title	Quantitative Analysis of Single Particle Tracking Experiments
Abstract	A commonly used experimental technique to study the movement of biomolecules is Single Particle Tracking (SPT). SPT involves tagging biomolecules (such as proteins) with a fluorescent label and observing and recording their trajectories over time. A diffusion coefficient describing the movement of the biomolecules then can be extracted from the data from mean square displacement calculations. The method of data collection from individual biomolecules is analogous to that from individual animals. Ecologists regularly quantify movement from observation of animals moving in the field, using the concepts of net squared displacement and residence index. We (1) explore the quantitative methods used in ecology to characterize the movement of animals from tracking data, and (2) investigate the possibility of adapting these methods to characterize the movement of biomolecules.