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Introduction to topological pressure/equilibrium states

Setting: (X ,T ) an expansive (invertible) dynamical system

∃δ > 0 s.t. x 6= y =⇒ d(T nx ,T ny) > δ for some n ∈ Z
(δ always refers to this)

Standard example: X ⊂ AZ a subshift, T the shift map
Subshifts always expansive:
x 6= y ⇒ ∃n s.t. x(n) 6= y(n)⇒ (T nx)(0) 6= (T ny)(0)

φ : X → R is a continuous fcn. called a potential

The topological pressure of (X ,T , φ) is

P(X ,T , φ) = sup
µ

(
h(µ) +

∫
φ dµ

)

For expansive (X ,T ), the supremum is achieved
µ achieving sup are called equilibrium states for (X ,T , φ)
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Introduction to topological pressure/equilibrium states

Informally, φ gives “incentive” to various parts of X ; an
equilibrium state µ balances that incentive against the
incentive of maximizing entropy

Example: X = {0, 1}Z, T is the shift, φ =

{
0 if x(0) = 0

1 if x(0) = 1

Unique equilibrium state µ is the ( 1
3 ,

2
3 )-Bernoulli measure; “1

is twice as good as 0” due to influence of φ

Example 2: X = {A,B}, T is the identity

h(µ) always 0, so equilibrium state is δA or δB depending on
whether φ(A) or φ(B) is bigger
If φ(A) = φ(B), all invariant measures are equilibrium states
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Introduction to topological pressure/equilibrium states

Question: Given (X ,T , φ), when is equilibrium state unique?

Unique equilibrium states often important objects of study,
e.g. SRB measures in smooth dynamics or Gibbs measures in
statistical physics

Common hypotheses are mixing property on (X ,T ) and
regularity property on φ

Mixing: Given two parts of the space, T eventually sends
some point of the first to the second

Given x , y , can find z whose orbit stays close to x for a long
time, and then later stays close to y for a long time

Regularity: Control on |φ(x)− φ(y)| in terms of d(x , y)

If x , y close for a long time, then φ(x) and φ(y) are very close



Introduction to topological pressure/equilibrium states

Question: Given (X ,T , φ), when is equilibrium state unique?

Unique equilibrium states often important objects of study,
e.g. SRB measures in smooth dynamics or Gibbs measures in
statistical physics

Common hypotheses are mixing property on (X ,T ) and
regularity property on φ

Mixing: Given two parts of the space, T eventually sends
some point of the first to the second

Given x , y , can find z whose orbit stays close to x for a long
time, and then later stays close to y for a long time

Regularity: Control on |φ(x)− φ(y)| in terms of d(x , y)

If x , y close for a long time, then φ(x) and φ(y) are very close



Introduction to topological pressure/equilibrium states

Question: Given (X ,T , φ), when is equilibrium state unique?

Unique equilibrium states often important objects of study,
e.g. SRB measures in smooth dynamics or Gibbs measures in
statistical physics

Common hypotheses are mixing property on (X ,T ) and
regularity property on φ

Mixing: Given two parts of the space, T eventually sends
some point of the first to the second

Given x , y , can find z whose orbit stays close to x for a long
time, and then later stays close to y for a long time

Regularity: Control on |φ(x)− φ(y)| in terms of d(x , y)

If x , y close for a long time, then φ(x) and φ(y) are very close



Introduction to topological pressure/equilibrium states

Question: Given (X ,T , φ), when is equilibrium state unique?

Unique equilibrium states often important objects of study,
e.g. SRB measures in smooth dynamics or Gibbs measures in
statistical physics

Common hypotheses are mixing property on (X ,T ) and
regularity property on φ

Mixing: Given two parts of the space, T eventually sends
some point of the first to the second

Given x , y , can find z whose orbit stays close to x for a long
time, and then later stays close to y for a long time

Regularity: Control on |φ(x)− φ(y)| in terms of d(x , y)

If x , y close for a long time, then φ(x) and φ(y) are very close



Introduction to topological pressure/equilibrium states

Question: Given (X ,T , φ), when is equilibrium state unique?

Unique equilibrium states often important objects of study,
e.g. SRB measures in smooth dynamics or Gibbs measures in
statistical physics

Common hypotheses are mixing property on (X ,T ) and
regularity property on φ

Mixing: Given two parts of the space, T eventually sends
some point of the first to the second

Given x , y , can find z whose orbit stays close to x for a long
time, and then later stays close to y for a long time

Regularity: Control on |φ(x)− φ(y)| in terms of d(x , y)

If x , y close for a long time, then φ(x) and φ(y) are very close



Introduction to topological pressure/equilibrium states

Question: Given (X ,T , φ), when is equilibrium state unique?

Unique equilibrium states often important objects of study,
e.g. SRB measures in smooth dynamics or Gibbs measures in
statistical physics

Common hypotheses are mixing property on (X ,T ) and
regularity property on φ

Mixing: Given two parts of the space, T eventually sends
some point of the first to the second

Given x , y , can find z whose orbit stays close to x for a long
time, and then later stays close to y for a long time

Regularity: Control on |φ(x)− φ(y)| in terms of d(x , y)

If x , y close for a long time, then φ(x) and φ(y) are very close



Introduction to topological pressure/equilibrium states

Question: Given (X ,T , φ), when is equilibrium state unique?

Unique equilibrium states often important objects of study,
e.g. SRB measures in smooth dynamics or Gibbs measures in
statistical physics

Common hypotheses are mixing property on (X ,T ) and
regularity property on φ

Mixing: Given two parts of the space, T eventually sends
some point of the first to the second

Given x , y , can find z whose orbit stays close to x for a long
time, and then later stays close to y for a long time

Regularity: Control on |φ(x)− φ(y)| in terms of d(x , y)

If x , y close for a long time, then φ(x) and φ(y) are very close



Bowen’s theorem

Rufus Bowen proved a wonderful result in this area, using the
following hypotheses.

Mixing: (X ,T ) satisfies (weak) specification if for all ε > 0,
there exists C so that for every k , every x1, . . . , xk ∈ X , and
every n1, . . . , nk and gaps m1, . . . ,mk−1 ≥ C , there is a point
z ∈ X whose orbit stays ε-close to the orbit of x1 for n1
iterates, then is uncontrolled for m1 iterates, then stays ε-close
to the orbit of x2 for n2 iterates, ...
Regularity: φ is a Bowen potential if there exist ε > 0 and C

so that for every n and every pair x , y with d(T ix ,T iy) < ε
for 0 ≤ i < n,

|Snφ(x)− Snφ(y)| =

∣∣∣∣∣
n−1∑
i=0

φ(T ix)−
n−1∑
i=0

φ(T iy)

∣∣∣∣∣ < C .
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Bowen’s theorem

Theorem: (Bowen, 1975) If (X ,T ) is expansive and has
specification, and φ is a Bowen potential, then (X ,T , φ) has
a unique equilibrium state, which is fully supported.

Mixing shifts of finite type and hyperbolic toral automorphisms
are expansive systems with specification
Define Vn = Vn(X ,T , φ) = sup{|φ(x)− φ(y)|} over pairs
(x , y) where d(T ix ,T iy) < δ for all |i | ≤ n
φ continuous, so Vn → 0, but rate could be slow

φ is Bowen whenever
∑

Vn <∞
Corollary: all Hölder potentials are Bowen for subshifts
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Non-uniform hypotheses

Both specification and the Bowen property are very strong;
certain quantities are uniformly bounded in n

Specification: the required gap to interpolate between length-n
orbit segments
Bowen property: variation of partial sums Snφ over (x , y)
which stay close for n iterates

Question: Could one make (weaker) non-uniform versions of
these properties? Might slow unbounded growth still be
enough for uniqueness of equilibrium state?

Answer to both: yes!

Let’s start with mixing
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Non-uniform mixing properties

f always refers to nondecreasing f : N→ N

(X ,T ) satisfies non-uniform specification with gap
function f if for every k , n, every x1, . . . , xk ∈ X , and every
m1, . . . ,mk−1 ≥ f (n), there is a point z ∈ X whose orbit
stays δ-close to the orbit of x1 for n iterates, then is
uncontrolled for m1 iterates, then stays δ-close to the orbit of
x2 for n iterates, ...

Informal: can combine any number of orbit segments for all
gap lengths which are “large enough” in comparison to orbit
segment lengths

Originally defined by Brian Marcus
If f is constant, this is just specification
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Non-uniform regularity properties

g always refers to nondecreasing g : N→ N

φ is Bowen if ∃C so that for every n and every pair x , y with
d(T ix ,T iy) < δ for 0 ≤ i < n,

|Snφ(x)− Snφ(y)| =

∣∣∣∣∣
n−1∑
i=0

φ(T ix)−
n−1∑
i=0

φ(T iy)

∣∣∣∣∣ < C .

φ has partial sum variation bounds g(n) if for every n and
every pair x , y with d(T ix ,T iy) < δ for 0 ≤ i < n,

|Snφ(x)− Snφ(y)| =

∣∣∣∣∣
n−1∑
i=0

φ(T ix)−
n−1∑
i=0

φ(T iy)

∣∣∣∣∣ < g(n).

If g is constant, this is just the Bowen property
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Main results

Equivalent formulation of Bowen’s theorem:

If (X ,T ) is expansive and has non-uniform specification with
bounded gap function f (n), and if φ has bounded partial sum
variation bounds g(n), then (X ,T , φ) has a unique fully
supported equilibrium state.

Theorem: (P.) If (X ,T ) is expansive and has non-uniform
specification with gap function f (n), φ has partial sum

variation bounds g(n), and lim inf
n

f (n) + g(n)

log n
= 0, then

(X ,T , φ) has a unique fully supported equilibrium state.

Informally: both gap function for (X ,T ) and partial sum
growth rate for φ need not be bounded, just sublogarithmic
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Applications

Example: The bounded density shifts of Stanley

For a nondecreasing subadditive h : N→ N, Xh is the set of
all biinfinite sequences on {0, 1} where ∀n, every n-letter
subword has ≤ h(n) 1 symbols (T is the shift)

If h(n) = n, then Xh is full shift
If h(n) = dn/2e, then Xh is golden mean shift (no adjacent 1s)
If h(n) = 0, then Xh = {. . . 000 . . .}
h(n)/n approaches limit α by subadditivity (and h(n) ≥ nα);
restrict to α > 0 case for nontriviality

If h(n) = nα + o(log n), then Xh has non-uniform
specification with gap function f (n) = o(log n) (and does not
have specification if h(n)− nα unbounded)
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Applications

Recall Vn = Vn(X ,T , φ) = sup{|φ(x)− φ(y)|} over pairs
(x , y) where d(T ix ,T iy) < δ for all |i | ≤ n.

φ has partial sum variation bounds g(n) := 2

dn/2e∑
i=1

Vi

If φ has “barely unsummable” Vn, φ has slowly growing
partial sum variation bounds

Example: Take (X ,T ) the full shift on {0, 1}, any q : N→ R
with q ↘ 0, define φq(x) = q(n), where n is the length of the
longest constant block containing x(0)

If q = o(log n/n), then φq has partial sum variation bounds
g(n) = o(log n)
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Tightness of main results

lim inf
f (n) + g(n)

log n
= 0 enough for uniqueness

This is close to optimal... let’s look at f = 0 and g = 0 cases

When f = 0, (X ,T ) must be a full shift

Theorem: (Hofbauer, 1977) For any ε > 0, there is a
potential φ on a full shift with partial sum variation bounds
g(n) = (1 + ε) log n and multiple equilibrium states.

When g = 0, φ constant and equilibrium states are measures
of maximal entropy

Theorem: (Kwietniak-Oprocha-Rams, 2016; P., 2016)
For any ε > 0, there exists a subshift X with non-uniform
specification with gap function f (n) = ε log n and multiple
measures of maximal entropy.

Conclusion: O(log n) is the correct “tipping point” for f , g
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Some words about the proof

Bowen’s approach was to create MME µ from limit of
equidistributed periodic points and then prove µ has partial

mixing, i.e. lim inf
n

µ(A ∩ T nB)

µ(A)µ(B)
> 0

Then he showed “not enough room” for another ergodic
MME

Lower bound comes from constants in definitions of
specification, Bowen potential
Since f (n) may be unbounded, won’t work for us
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Some words about the proof

Step 1: Control on |Ln(X )|

Use non-uniform specification on any k-tuple in Ln(X ):
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n
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f (n) f (n)

|Lk(n+f (n))(X )| ≥ |Ln(X )|k
log |Lk(n+f (n)(X )|

k(n+f (n)) ≥ k log |Ln(X )|
k(n+f (n))

h(X ) ≥ log |Ln(X )|
n+f (n)

|Ln(X )| ≤ eh(X )(n+f (n)) = enh(X )no(1) (since f = o(log n))
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Step 2: Assume for contradiction that µ 6= ν ergodic MMEs

Baby case: µ, ν disjoint supports Y ,Z

Since µ, ν MMEs, |Li (Y )|, |Li (Z )| ≥ e ih(X ) ∀i
Since Y ∩ Z = ∅, ∃N so that LN(Y ) ∩ LN(Z ) = ∅

∈ L(Y )

j

∈ L(Z )

n − f (n)− j

f (n)

Fixed j : |Lj(Y )||Ln−f (n)−j(Z )| ≥ eh(X )(n−f (n)) words in Ln(X )
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Step 2: Assume for contradiction that µ 6= ν ergodic MMEs

Grown-up case: µ 6= ν, but supports may overlap
µ ⊥ ν, so can find clopen set S where µ(S), ν(Sc) < ε
But... no reason sets for j 6= j ′ should be disjoint anymore
Could use ergodic theorem to choose “typical” words for µ, ν
But they could still overlap at small distances
Main new idea: use maximal ergodic theorem!
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Some words about the proof

Maximal ergodic theorem tells us that

µ

({
x : ∀n, 1

n

n−1∑
i=0

χS(T ix) ≤ 2µ(S)

})
≥ 1

2
.

If |Ln(X )| “not much bigger” than enh(X ), then subset of
Ln(X ) with large measure for an MME “not too small”

So, get “large” Wn ⊂ Ln(X ) of words where every prefix has
proportion ≤ 2µ(S) < 2ε of visits to S

|Wn| ≥ enh(X )n−o(1)

Using ν, T−1, can get “large” Vn ⊂ Ln(X ) of words where
suffixes have proportion ≤ 2ν(Sc) < 2ε of visits to Sc

|Vn| ≥ enh(X )n−o(1)
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Wn ⊂ Ln(X ): prefixes visit S w/proportion ≤ 2µ(S) < 2ε

Vn ⊂ Ln(X ): suffixes visit Sc w/proportion ≤ 2µ(S) < 2ε

∈ Vj ∈Wn−f (n)−j
f (n)

∈ Vj ′ ∈Wn−f (n)−j ′
f (n)

Long word can’t simultaneously be suffix of word in some Vi

and prefix of word in some Wi ′ if ε small enough

So, again we get disjoint sets for |j − j ′| large, we get a
contradiction as before, and there is a unique MME µ

General proof (adding φ, expansive (X ,T ), etc.) similar
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Questions

Can we weaken expansiveness assumption? Entropy
expansive?

Properties of µ? Mixing? (UPDATE: An argument of
Ledrappier tells us that (X ,T , µ) is a K-system!)

Does non-uniform specification ever imply existence of
periodic points?

Can “o(log n)” replace “bounded” in other proofs using
mixing and/or regularity hypotheses?
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Thanks for listening!
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