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Overview.

• Study intermittency exponents ζp such that

〈|∆v|p〉 ∼ `ζp

where ∆v is contribution to fluid velocity at small scale `.

[ Claim:

ζp =
p

3
− 1

lnκ
ln Γ(

p

3
+ 1)

experimentally (lnκ)−1 = 0.32 , i.e., κ ≈ 20 or 25 ].

• Distribution of radial velocity increment and relation with
Kolmogorov-Obukhov.

• Reynolds number ≈ 100 at onset of turbulence.
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1. Obtaining the basic probability distribution.

• Kinetic energy goes down from large spatial scale `0 to small
scales through a cascade of eddies of increasing order n so that

v =
∑
n≥0

vn

with viscous cutoff.

Eddy of order n − 1 in ball R(n−1)i decomposes after time T(n−1)i
into eddies of order n contained in balls Rnj ⊂ R(n−1)i .

Balls Rnj form a partition of 3-space into roughly spherical
polyhedra of linear size `nj , lifetime Tnj .



• Assume that the dynamics of each eddy is universal, up to
scaling of space and time, and independent of other eddies.

Conservation of kinetic energy E yields

∑
j

E (Rnj)

Tnj
=

E (R(n−1)i )

T(n−1)i

Universality of dynamics and inviscid scaling give for initial eddy
velocities

vn
`nj

=
T(n−1)i

Tnj
· vn−1
`n−1

hence ∑
j

∫
Rnj

|vn|3

`nj
=

∫
R(n−1)i

|vn−1|3

`(n−1)i

(implies intermittency).



• For simplicity assume size `nj depends only on n: `(n−1)i/`nj = κ.
Then

κ
∑
j

∫
Rnj

|vn|3 =

∫
R(n−1)i

|vn−1|3

• Assume that the distribution of the vn between different Rnj

maximizes entropy: microcanonical distribution → canonical
distribution:

∼ exp[−β|vn|3] d3vn

Integrating over angular variables:

∼ exp[−β|vn|3]|vn|2 d |vn| =
1

3
exp[−β|vn|3] d |vn|3

hence Vn = |v|3 has distribution

β exp[−βVn] dVn



• Finally since the average value β−1 of Vn is Vn−1/κ, Vn is
distributed according to

κ

Vn−1
exp

[
− κVn

Vn−1

]
dVn

Starting from a given value of V0 the distribution of Vn is given by

κ dV1

V0
e−κV1/V0 · · · κ dVn

Vn−1
e−κVn/Vn−1 (∗)

The validity of (∗) is limited by dissipation due to the viscosity ν:
we must have

V
1/3
n `n > ν



2. Calculating ζp.

• To compute the mean value of |vn|p = V
p/3
n we note that

κ
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∫
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]
.V

p/3
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p/3
n−1Γ

(p
3

+ 1
)

hence, using induction and `n/`0 = κ−n,

〈V p/3
n 〉 =

κ
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∫
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]
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κ
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∫
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• Therefore

ln〈|vn|p〉 = ln〈V p/3
n 〉 = lnV

p/3
0 +

p

3
ln
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`0

)
− ln(`n/`0)

lnκ
ln Γ
(p

3
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)
.
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3
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where

ζp =
p

3
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lnκ
ln Γ
(p

3
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)

or

〈|vn|p〉 = V
p/3
0

(`n
`0

)ζp
∼ `ζpn

as announced.



3. Estimating the probability distribution F (u) of the radial
velocity increment u. Relation with Kolmogorov-Obukhov.

• If r ≈ `n we have u ≈ un ≈ radial component of vn
⇒ rough estimate of the probability distribution of u:

F (u) =
( n∏

k=1

∫ ∞
0

κ dVk

Vk−1
e−κVk/Vk−1

) 1

2V
1/3
n

χ
[−V 1/3

n ,V
1/3
n ]

(u)

=
1

2
(
κn

V0
)1/3

∫
· · ·
∫
w1···wn>(κn/V0)|u|3

n∏
k=1

dwk e
−wk

w
1/3
k

• The distribution Gn(y) of y = (κn/V0)1/3|u| is given by

Gn(y) =

∫
· · ·
∫
w1···wn>y3

n∏
k=1

dwk e
−wk

w
1/3
k



• This satisfies

etGn(et) = (φ∗(n−1) ∗ ψ)(t) (∗∗)

with

φ(t) = 3 exp(3t − e3t) , ψ(t) = et
∫ ∞
t

e−sφ(s) ds

[ ⇒ Gn(y) is a decreasing function of y ].

• For small u, Gn gives a good description of the distribution of u,
with normalized 〈|u|2〉 (see Schumacher et al.).

• (∗∗) suggests a lognormal distribution with respect to u in
agreement with Kolmogorov-Obukhov, but this fails because φ, ψ
tend to 0 only exponentially at −∞.



4. The onset of turbulence.

• We may estimate the Reynolds number Re = |v0|`0/ν for the
onset of turbulence by taking

1 ≈
〈 ν

|v1|`1

〉
=
〈 ν

V
1/3
1 κ−1`0

〉
= Re−1

〈
κ4/3

( V0

κV1

)1/3〉
[Relation to dissipation is dictated by dimensional arguments] ⇒

Re ≈ κ4/3
∫ ∞
0

(κV1

V0

)−1/3κ dV1

V0
e−κV1/V0

= κ4/3
∫ ∞
0

α−1/3 dα e−α = κ4/3Γ
(2

3

)
Taking 1/ lnκ = .32 hence κ4/3 = 64.5, with Γ(2/3) ≈ 1.354 gives
Re ≈ 87 agreeing with Re ≈ 100 as found in Schumacher et al.


