A homology theory for Smale spaces

Ian F. Putnam, University of Victoria Let (X,d) be a compact metric space, φ be a homeomorphism of X such that (X,d,φ) is an irreducible Smale space or the basic set for an Axiom A system.

For
$$p \ge 1$$
, let
 $per_p(X, \varphi) = \#\{x \in X \mid \varphi^p(x) = x\}.$

Theorem 1 (Manning). For (X, φ) as above, the Artin-Mazur zeta function

$$\zeta_{\varphi}(t) = exp\left(\sum_{p=1}^{\infty} \frac{per_p(X,\varphi)}{p} t^p\right)$$

is rational.

Bowen asked if there exist a homology theory for such systems that explains this result. (Problem 7.)

For each $n \ge 0$, $H_n(X, \varphi)$ is a finite-dimensional vector space, non-zero for only finitely many n, automorphisms φ_n of each and

$$\sum_{n=0}^{\infty} (-1)^n \quad Tr[(\varphi_n)^p : H_n(X, \varphi) \quad \to H_n(X, \varphi)]$$

$$= \#\{x \in X \mid \varphi^p(x) = x\},\$$

for all $p \geq 1$.

This is an analogue of the Lefschetz formula for smooth maps of manifolds and immediately implies Manning's rationality result.

The point of this talk: Yes.

In fact, there are two H_n^s, H_n^u , $n \in \mathbb{Z}$, and these are finite rank abelian groups. (Use $H_n^s \otimes \mathbb{Q}$ or $H_n^s \otimes \mathbb{R}$ above.)

Smale spaces (D. Ruelle)

(X, d) compact metric space, $\varphi : X \to X$ homeomorphism, $0 < \lambda, \epsilon_0 < 1$,

There is a continuous map

 $[\cdot, \cdot] : \{(x, y) \in X \times X \mid d(x, y) \le \epsilon_0\} \to X$

([x, y] is the intersection of the local stable set of x with the local unstable set of y) such that

$$[x, x] = x,$$

$$[x, [y, z]] = [x, z],$$

$$[[x, y], z] = [x, z],$$

$$[\varphi(x), \varphi(y)] = \varphi [x, y]$$

whenever all are defined and

$$[x,y] = y \Rightarrow d(\varphi(x),\varphi(y)) \le \lambda d(x,y)$$

and

$$[x,y] = x \Rightarrow d(\varphi^{-1}(x),\varphi^{-1}(y)) \le \lambda d(x,y)$$

We define, for x in X and $0 < \epsilon \le \epsilon_0$, the local stable and unstable sets by

$$X^{s}(x,\epsilon) = \{ y \in X \mid d(x,y) < \epsilon, [x,y] = y \}, X^{u}(x,\epsilon) = \{ y \in X \mid d(x,y) < \epsilon, [x,y] = x \},$$

and the global stable and unstable sets by

$$X^{s}(x) = \{ y \in X \mid \lim_{n \to +\infty} d(\varphi^{n}(x), \varphi^{n}(y)) = 0 \},$$

$$X^{u}(x) = \{ y \in X \mid \lim_{n \to +\infty} d(\varphi^{-n}(x), \varphi^{-n}(y)) = 0. \}$$

The map

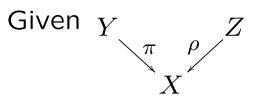
$$[\cdot, \cdot] : X^u(x, \epsilon) \times X^s(x, \epsilon) \to X$$

is a homeomorphism to a neighbourhood of \boldsymbol{x} with inverse

$$y \rightarrow ([y, x], [x, y]).$$

Example 2 (Fried). Every basic set for an Axiom A system is a Smale space (for some metric).

- A Smale space does not need to be embedded in a manifold.
- A Smale space can have wandering points.
- The fibred product of two Smale spaces is again a Smale space.



the fibred product is

$$\{(y,z) \in Y \times Z \mid \pi(y) = \rho(z)\}$$

Example 3. Every shift of finite type (SFT) is a Smale space. These are exactly the totally disconnected Smale spaces.

Example 4. *q*/*p*-*solenoid*

Let p < q be primes.

$$X = \mathbb{Q}_p \times \mathbb{R} \times \mathbb{Q}_q / \mathbb{Z}\left[(pq)^{-1} \right],$$

with

$$\varphi\left[x, y, z\right] = \left[p^{-1}qx, p^{-1}qy, p^{-1}qz\right]$$

Expanding coordinates $\mathbb{Q}_p \times \mathbb{R} \times \{z\}$ and contracting coordinates $\{x\} \times \{y\} \times \mathbb{Q}_q$.

Example 5. Nekrashevych: construction from actions of self-similar groups. **Example 6.** R.F. Williams' solenoids, expanding attractors **Example 7.** S. Wieler's solenoids. To find a homology theory for Smale spaces.

Step 1: Find the invariant for shifts of finite type: Wolfgang Krieger (1980). (There is also another by Bowen and Franks.)

Step 2: Extend it to all Smale spaces.

Going from 1. to 2. involves Markov partitions. But ordinary Markov partitions will not do, we need *better* Markov partitions.

Krieger's invariants for SFT's

Motivation: Cech cohomology

For any compact space X, its Cech cohomology is computed by considering a finite, open cover U_1, \ldots, U_N and the nerve of the cover; that is, the data of the non-empty intersections of these sets.

If X is totally disconnected, there are open covers which simplify this calculation: partitions into clopen sets, so that the intersections are all trivial.

Ultimately, the Cech cohomology (in dimension zero) is the abelian group generated by the clopen sets with relations

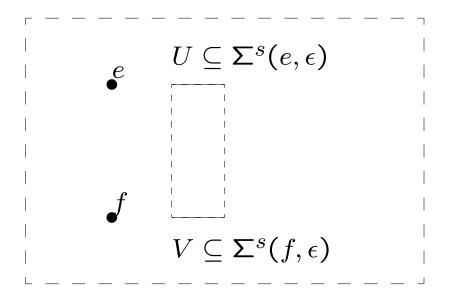
$$U + V = U \cup V,$$

whenever U, V are disjoint.

Krieger's idea: look at

$$U \subseteq \Sigma^s(e,\epsilon),$$

clopen in the relative topology. Equivalence relation $\sim:$ if we have



then $U \sim V$.

And $U \sim V \Leftrightarrow \sigma(U) \sim \sigma(V)$.

The invariant $D^s(\Sigma, \sigma)$ is an abelian group generated by the equivalence classes of relatively clopen sets with relations $[U \cup V] = [U] + [V], U \cap V = \emptyset$ and has a natural automorphism induced by σ .

An obvious question about Krieger's invariant: can it be computed?

Theorem 8 (Krieger). If G is a finite directed graph and (Σ_G, σ_G) is the associated SFT, then

 $D^{s}(\Sigma_{G}, \sigma_{G}) \cong \lim \mathbb{Z}^{N} \xrightarrow{A_{G}} \mathbb{Z}^{N} \xrightarrow{A_{G}} \cdots$

where

 $N = \#G^0, A_G = adjacency matrix of G.$ The automorphism σ_*^{-1} is multiplication by A_G . Corollary 9.

$$per_p(\Sigma_G, \sigma_G) = Tr(A_G^p) = Tr((\sigma_G)_*^{-p})$$

Another obvious question about Krieger's invariant: how did he think of it?

A superficial look at the definition - clopen set modulo unstable equivalence - makes it look like we are computing $\check{H}^0(\Sigma/\Sigma^u)$. We are not and that is fortunate since, for mixing SFT's, Σ/Σ^u is uncountable and indiscrete.

One of the principles of noncommutative topology is that when one finds such a quotient space, one should have built a C^* -algebra instead. Krieger saw this C^* -algebra quite explicitly and could compute its K_0 -group. That is the invariant. Recall the problem: find a homology theory for Smale spaces.

Step 1: Find the invariant for shifts of finite type: Wolfgang Krieger (1980).

Step 2: Extend it to all Smale spaces.

For the second step, we look to the proof of Manning's Theorem ...

Bowen's Theorem

(Also, Adler-Weiss, Sinai, etc.)

Theorem 10 (Bowen). For a (non-wandering) Smale space, (X, φ) , there exists a SFT (Σ, σ) and

$$\pi: (\Sigma, \sigma) \to (X, \varphi),$$

with $\pi \circ \sigma = \varphi \circ \pi$, continuous, surjective and finite-to-one.

The proof is the existence of Markov partitions.

 (Σ, σ) is not unique.

Manning's proof: keep track of when π is N-to-1, for various values of N.

For $N \ge 0$, define

$$\Sigma_N(\pi) = \{ (e_0, e_1, \dots, e_N) \mid \\ \pi(e_n) = \pi(e_0), \\ 0 \le n \le N \}.$$

For all $N \ge 0$, $(\Sigma_N(\pi), \sigma)$ is also a shift of finite type and S_{N+1} acts on $\Sigma_N(\pi)$.

We can form $D^s(\Sigma_N(\pi), \sigma))^{alt}$.

This is a good candidate for $H_N(X,\varphi)$ except that it depends on (Σ,σ) and π .

Manning used the periodic point data from the sequence $\Sigma_N(\pi)$ (with the action of S_{N+1}) to compute $per_n(X, \varphi)$.

This is extremely reminiscent of using the nerve of an open cover to compute homology of a compact manifold.

Topology	Dynamics
'good' open cover U_1,\ldots,U_I	Bowen's Theorem $\pi : (\Sigma, \sigma) \rightarrow (X, \varphi)$
$ \begin{array}{c} \text{multiplicities} \\ U_{i_0} \cap \dots \cap U_{i_N} \neq \emptyset \end{array} $	multiplicities $\Sigma_N(\pi)$
groups C^N generated by $U_{i_0} \cap \cdots \cap U_{i_N} \neq \emptyset$	groups $D^s({old \Sigma}_N(\pi))^{alt}$
boundary maps $\partial^1(U_i \cap U_j) = U_j - U_i$	boundary maps ??

The problem:

For $0 \le n \le N$, let $\delta_n : \Sigma_N(\pi) \to \Sigma_{N-1}(\pi)$ be the map which deletes entry n. This is a nice map between the dynamical systems.

Unfortunately, a map

$$\rho: (\Sigma, \sigma) \to (\Sigma', \sigma)$$

between shifts of finite type does *not* always induce a group homomorphism

$$\rho_*: D^s(\Sigma, \sigma) \to D^s(\Sigma', \sigma)$$

between Krieger's invariants.

But this problem is well-understood in symbolic dynamics ...

Definition 11. A factor map π : $(Y, \psi) \rightarrow (X, \varphi)$ between Smale spaces is *s*-bijective if, for all *y* in *Y*

$$\pi: Y^s(y) \to X^s(\pi(y))$$

is bijective.

It is a consequence that, for any $y, \epsilon > 0$, there is $\delta > 0$ such that $\pi(Y^s(y, \delta))$ is an open subset of $X^s(\pi(y), \epsilon)$ and π is a homeomorphism from $Y^s(y, \delta)$ to its image.

Theorem 12. Let $\pi : (\Sigma, \sigma) \to (\Sigma', \sigma)$ be a factor map between SFT's.

If π is s-bijective, then there is a map

$$\pi^s: D^s(\Sigma, \sigma) \to D^s(\Sigma', \sigma).$$

If π is *u*-bijective, then there is a map

$$\pi^{s*}: D^s(\Sigma', \sigma) \to D^s(\Sigma, \sigma).$$

A better Bowen's Theorem

Let (X, φ) be a Smale space. We look for a Smale space (Y, ψ) and a factor map

$$\pi_s: (Y,\psi) \to (X,\varphi)$$

satisfying:

1. π_s is *s*-bijective,

2. $Y^u(y,\epsilon)$ totally disconnected.

That is, $Y^u(y, \epsilon)$ is totally disconnected, while $Y^s(y, \epsilon)$ is homeomorphic to $X^s(\pi_s(y), \epsilon)$.

This is a "one-coordinate" version of Bowen's Theorem.

Similarly, we look for a Smale space (Z,ζ) and a *u*-bijective factor map $\pi_u : (Z,\zeta) \to (X,\varphi)$ with $Z^s(z,\epsilon)$ totally disconnected.

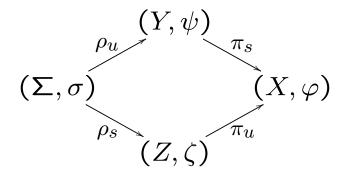
We call $\pi = (Y, \psi, \pi_s, Z, \zeta, \pi_u)$ a s/u-bijective pair for (X, φ) .

Theorem 13 (Better Bowen). If (X, φ) is a non-wandering Smale space, then there exists an s/u-bijective pair, $\pi = (Y, \psi, \pi_s, Z, \zeta, \pi_u)$.

Like the SFT in Bowen's Theorem, this is not unique.

The fibred product is a SFT:

$$\Sigma = \{(y, z) \in Y \times Z \mid \pi_s(y) = \pi_u(z)\}.$$



20

For $L, M \geq 0$, we define

$$\Sigma_{L,M}(\pi) = \{(y_0, \dots, y_L, z_0, \dots, z_M) \mid \\ y_l \in Y, z_m \in Z, \\ \pi_s(y_l) = \pi_u(z_m)\}.$$

Each of these is a SFT.

Moreover, the maps

$$\delta_{l,}: \Sigma_{L,M} \to \Sigma_{L-1,M},$$

$$\delta_{m}: \Sigma_{L,M} \to \Sigma_{L,M-1}$$

which delete y_l and z_m are *s*-bijective and *u*-bijective, respectively.

This is the key point! These maps *do* induce maps on Krieger's invariant and we can use them to make boundary maps.

We get a double complex:

$$D^{s}(\Sigma_{0,2})^{alt} \leftarrow D^{s}(\Sigma_{1,2})^{alt} \leftarrow D^{s}(\Sigma_{2,2})^{alt} \leftarrow D^{s}(\Sigma_{2,2})^{alt} \leftarrow D^{s}(\Sigma_{2,1})^{alt} \leftarrow D^{s}(\Sigma_{2,1})^{alt}$$

$$\partial_N^s : \qquad \oplus_{L-M=N} D^s(\Sigma_{L,M})^{alt} \\ \rightarrow \qquad \oplus_{L-M=N-1} D^s(\Sigma_{L,M})^{alt}$$

$$\partial_N^s = \sum_{l=0}^L (-1)^l \delta_{l,}^s + \sum_{m=0}^{M+1} (-1)^{m+M} \delta_{m,m}^{s*}$$

$$H_N^s(\pi) = \ker(\partial_N^s) / Im(\partial_{N+1}^s).$$

Theorem 14. The groups $H_N^s(\pi)$ depend on (X, φ) , but not the choice of s/u-bijective pair $\pi = (Y, \psi, \pi_s, Z, \zeta, \pi_u).$

From now on, we write $H_N^s(X,\varphi)$.

Theorem 15. The functor $H_*^s(X, \varphi)$ is covariant for *s*-bijective factor maps, contravariant for *u*-bijective factor maps.

Theorem 16. The groups $H_N^s(X, \varphi)$ are all finite rank and non-zero for only finitely many $N \in \mathbb{Z}$.

Theorem 17 (Lefschetz Formula). Let (X, φ) be any non-wandering Smale space and let $p \ge 1$.

$$\sum_{N \in \mathbb{Z}} (-1)^N \quad Tr[(\varphi^s)^{-p} : H^s_N(X, \varphi) \otimes \mathbb{Q}$$
$$\rightarrow \qquad H^s_N(X, \varphi) \otimes \mathbb{Q}]$$
$$= \qquad \#\{x \in X \mid \varphi^p(x) = x\}$$

Example 18. Shifts of finite type

If $(X, \varphi) = (\Sigma, \sigma)$, then $Y = \Sigma = Z$ is an s/ubijective pair. In the double complex, only the lower left group is non-zero and

$$H_0^s(\Sigma, \sigma) = D^s(\Sigma, \sigma),$$

$$H_N^s(\Sigma, \sigma) = 0, N \neq 0.$$

Remark 19. In any Smale space with totally disconnected stable sets, we may choose Z = X. Then the double complex is only non-zero in its bottom row.

Example 20. $\frac{q}{p}$ -solenoid[N. Burke-P.]

Let p < q be primes and (X, φ) the $\frac{q}{p}$ -solenoid.

$$H_0^s(X,\varphi) \cong \mathbb{Z}[1/q]$$

$$H_1^s(X,\varphi) \cong \mathbb{Z}[1/p]$$

$$H_N^s(X,\varphi) = 0, N \neq 0, 1$$

Example 21. 1-dimensional solenoids of R.F. Williams [Amini, P., Saeidi]

If (X, φ) is an orientable 1-d solenoid, then

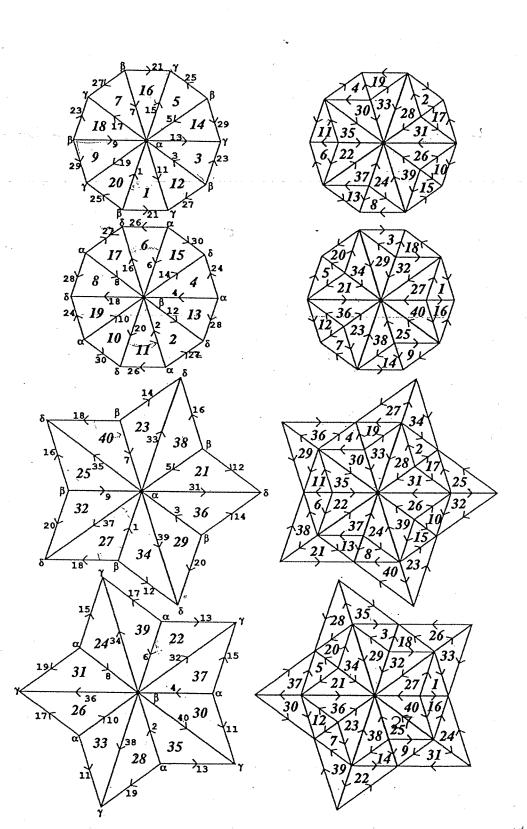
$$\begin{array}{rcl} H_0^s(X,\varphi) &\cong \check{H}^1(X) \\ H_1^s(X,\varphi) &\cong \check{H}^0(X) \cong \mathbb{Z}, \\ H_N^s(X,\varphi) &= 0, N \neq 0, 1 \end{array}$$

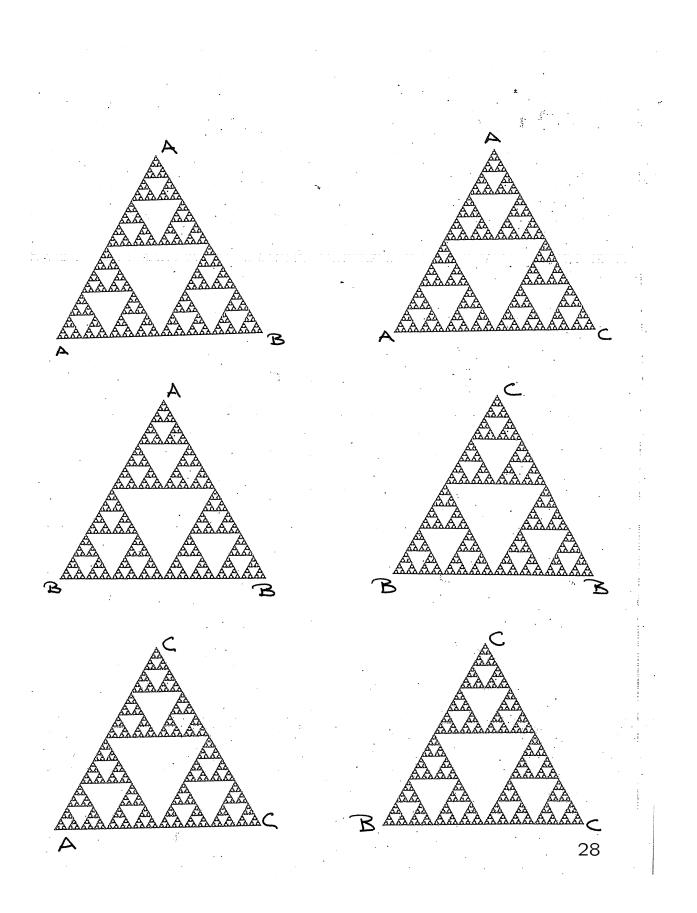
If it is non-orientable, then these do not hold (in general) and $H_i^s(X, \varphi)$ has torsion.

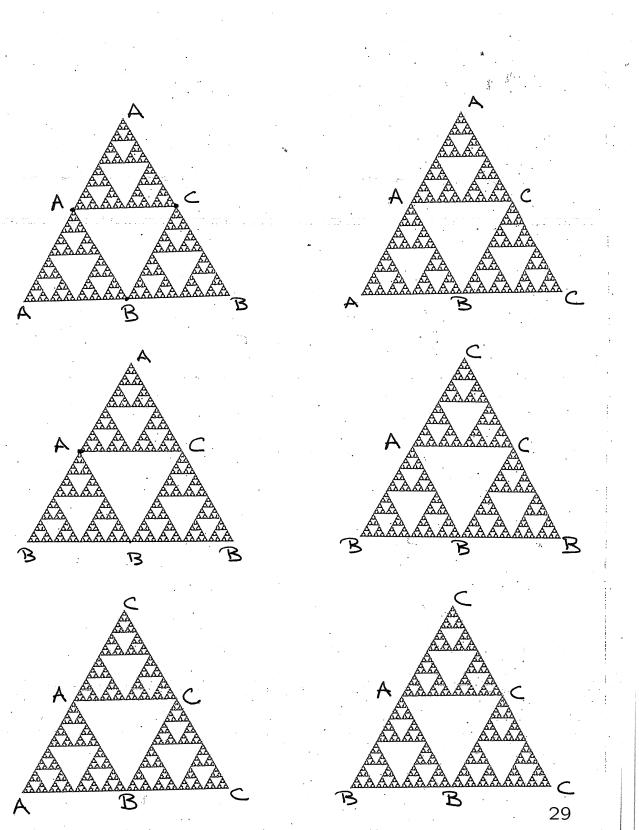
Example 22. *Full* 2-*shift x non-orientable* 1*solenoid*

Deeley-Killough-Whittaker

This has the same homology as a SFT, but is not a SFT.







•