Amenable actions, Lyapunov exponents and an idea of Bowen

Ursula Hamenstädt

Universität Bonn

August 7, 2017

・ロト・日本・モト・モート ヨー うへで

Rufus Bowen, *Symbolic dynamics for hyperbolic flows*, Amer. J. Math 95 (1973), 429–460.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rufus Bowen, *Symbolic dynamics for hyperbolic flows*, Amer. J. Math 95 (1973), 429–460.

Rufus Bowen, *Anosov Foliations are Hyperfinite*, Annals of Math. 106 (1977), pp. 549–565.

Rufus Bowen, *Symbolic dynamics for hyperbolic flows*, Amer. J. Math 95 (1973), 429–460.

Rufus Bowen, *Anosov Foliations are Hyperfinite*, Annals of Math. 106 (1977), pp. 549–565.

Rufus Bowen, *Hausdorff dimension of quasi-circles*, Publ. Math. IHES 50 (1979), 11–25.

M a closed manifold of negative curvature. The geodesic flow Φ^t acts on the unit tangent bundle T^1M of *M*. This flow is Anosov. Periodic orbits correspond to conjugacy classes in $\pi_1(M)$.

M a closed manifold of negative curvature. The geodesic flow Φ^t acts on the unit tangent bundle T^1M of *M*. This flow is Anosov. Periodic orbits correspond to conjugacy classes in $\pi_1(M)$.

Let \tilde{M} be the universal covering of M, with geometric boundary $\partial \tilde{M}$. Invariant Borel probability measures on T^1M correspond to $\pi_1(M)$ -invariant Radon measures on $\partial M \times \partial M - \Delta$.

This correspondence is independent of a bounded time-change of the flow.

M a closed manifold of negative curvature. The *geodesic flow* Φ^t acts on the unit tangent bundle T^1M of *M*. This flow is Anosov. Periodic orbits correspond to conjugacy classes in $\pi_1(M)$.

Let \tilde{M} be the universal covering of M, with geometric boundary $\partial \tilde{M}$. Invariant Borel probability measures on T^1M correspond to $\pi_1(M)$ -invariant Radon measures on $\partial M \times \partial M - \Delta$.

This correspondence is independent of a bounded time-change of the flow.

Any flip-invariant Gibbs measure, eg the Bowen-Margulis measure, defines a measure μ of quasi-product type, ie the measure class of μ equals the class of $\nu \times \nu$ for some $\pi_1(M)$ -invariant measure class ν .

Geometric hyperbolicity

Definition

A geodesic metric space is δ -hyperbolic if for any geodesic triangle T with sides a, b, c we have

 $a \subset N_{\delta}(b \cup c).$

Geometric hyperbolicity

Definition

A geodesic metric space is δ -hyperbolic if for any geodesic triangle T with sides a, b, c we have

$$a \subset N_{\delta}(b \cup c).$$

Example

Simply connected complete Riemannian manifolds of negative sectional curvature are hyperbolic.

Geometric hyperbolicity

Definition

A geodesic metric space is δ -hyperbolic if for any geodesic triangle T with sides a, b, c we have

$$a \subset N_{\delta}(b \cup c).$$

Example

Simply connected complete Riemannian manifolds of negative sectional curvature are hyperbolic.

Hyperbolic spaces X admit a *Gromov boundary* ∂X , a metrizable Iso(X)-space. They are *non-elementary* if ∂X has at least three points. If X is proper then ∂X is compact.

A finitely generated group Γ is *hyperbolic* if its Cayley graph is hyperbolic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A finitely generated group Γ is *hyperbolic* if its Cayley graph is hyperbolic.

Example

Fundamental groups of closed negatively curved manifolds are hyperbolic.

An isometric action of a discrete group Γ on a metric space X is weakly properly discontinuous if $\forall R > 0 \exists B(R) > 0, N(R) > 0$: If $d(x, y) \ge B(R)$ then

$$\sharp\{g\in \Gamma\mid d(x,gx)\leq R, d(y,gy)\leq R\}\leq N(R).$$

A discrete group Γ is *acylindrically hyperbolic* if it admits a non-elementary weakly properly discontinuous action on a separable δ -hyperbolic geodesic metric space.

A discrete group Γ is *acylindrically hyperbolic* if it admits a non-elementary weakly properly discontinuous action on a separable δ -hyperbolic geodesic metric space.

Example

- 1. Hyperbolic groups
- 2. Fundamental group of finite volume pinched negatively curved manifolds
- 3. Mapping class groups of surfaces of finite type (Masur-Minsky, Bowditch)
- 4. $Out(F_n)$ (Bestvina-Feighn)

But: Lattices in higher rank simple Lie groups are not acylindrically hyperbolic (Burger-Monod, Bestvina-Fujiwara, H)

A group Γ of homeomorphisms of an infinite compact metric space *B* is a *convergence group* if, given any sequence of distinct $g_i \in \Gamma$, there are points *c* and *b* of *B* and a subsequence g_{n_i} such that

$$g_{n_i}(z) \rightarrow b$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

uniformly for all points z outside compact neighborhoods of c.

A group Γ of homeomorphisms of an infinite compact metric space *B* is a *convergence group* if, given any sequence of distinct $g_i \in \Gamma$, there are points *c* and *b* of *B* and a subsequence g_{n_i} such that

$$g_{n_i}(z) \rightarrow b$$

uniformly for all points z outside compact neighborhoods of c.

Equivalent (Gehring-Martin): The action of Γ on the space of pairwise distinct triples of B is properly discontinuous

A group Γ of homeomorphisms of an infinite compact metric space *B* is a *convergence group* if, given any sequence of distinct $g_i \in \Gamma$, there are points *c* and *b* of *B* and a subsequence g_{n_i} such that

$$g_{n_i}(z) \rightarrow b$$

uniformly for all points z outside compact neighborhoods of c.

Equivalent (Gehring-Martin): The action of Γ on the space of pairwise distinct triples of B is properly discontinuous

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

A hyperbolic group Γ acts on its Gromov boundary as a convergence group.

Proposition

Assume that Γ acts minimally on B as a convergence group.

- 1. (Tukia) $\Gamma \cup B$ is a compactification of Γ .
- 2. Let $(g_i) \subset \Gamma$ be a sequence s.th. $g_i \to b \in B$; then $(g_i)_*\nu \to \delta_b$ for every non-atomic probability measure ν on B.

Proposition

Assume that Γ acts minimally on B as a convergence group.

- 1. (Tukia) $\Gamma \cup B$ is a compactification of Γ .
- Let (g_i) ⊂ Γ be a sequence s.th. g_i → b ∈ B; then (g_i)_{*}ν → δ_b for every non-atomic probability measure ν on B.

Theorem

(Sun 2016) A convergence group is acylindrically hyperbolic.

Let Γ be a discrete group.

The space of $\mathcal{P}(\Gamma)$ of probability measures on Γ is the space of non-negative integrable functions ν of ℓ^1 -norm

$$\|\nu\|_1 = \sum_g |\nu(g)| = 1.$$

Definition

The action of the group Γ on a compact uniformly perfect metrizable space B is called *amenable* if the following holds true. There is a sequence $\xi_n : B \to \mathcal{P}(\Gamma)$ with image consisting of finitely supported measures such that

$$\|g\xi_n(x)-\xi_n(gx)\|_1\to 0$$

uniformly on compact subsets of $B \times \Gamma$.

Amenability also makes sense for actions of countable discrete groups Γ on measure spaces X preserving a measure class μ .

Example

- 1. A group Γ is amenable iff it admits an amenable action on a point.
- 2. (Connes-Feldman-Weiss) Assume that Γ acts on (B, μ) . The action is amenable iff the orbit equivalence relation is hyperfinite.
- 3. (Bowen) The stable foliation of a geodesic flow Φ^t on a closed negatively curved manifold M is hyperfinite for any Gibbs measure \Rightarrow the action of $\pi_1(M)$ on $(\partial \tilde{M}, \nu)$ is amenable where ν is the measure class on $\partial \tilde{M}$ induced by ν .

- 1. The action of a lattice Γ in a simple Lie group G of non-compact type on the Furstenberg boundary G/P of G is amenable.
- 2. The action of a Gromov hyperbolic group Γ on the Gromov boundary $\partial\Gamma$ is amenable (Adams 1994)
- The action of a group Γ relatively hyperbolic to a finite collection of amenable subgroups on a geometric boundary is amenable (Ozawa 06)
- 4. Mapping class groups admit an amenable action on an explicit boundary (Kida, H 09)
- 5. $Out(F_n)$ is boundary amenable (Bestvina, Guirardel, Horbez 17)

A *universal boundary* for Γ is a Γ -space X with the following properties.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 1. X is a compact uniformly perfect Polish space.
- 2. The action of Γ on X is amenable and minimal.
- 3. The action of Γ on X is a convergence action.

Groups which admit universal boundaries include groups which are hyperbolic relative to a finite collection of amenable subgroups (eg fundamental groups of finite volume pinched negatively curved manifolds)

Proposition

If B is a universal boundary of a group Γ then $\Gamma \cup B = \overline{\Gamma}$ is a compactification of Γ which is small at infinity.

Means: The right translation action extends continuously to the identity on ${\cal B}$

Measures and flows

Measures and flows

Let B be a universal boundary of a finitely generated group Γ and let ν be a Borel probability measure on B whose measure class is invariant.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Measures and flows

Let B be a universal boundary of a finitely generated group Γ and let ν be a Borel probability measure on B whose measure class is invariant.

Definition

The measure ν is of quasi-product type if there exists a Γ -invariant Radon measure on $B \times B - \Delta$ in the measure class of $\nu \times \nu$.

Assume that Γ acts properly and cocompactly on a proper hyperbolic geodesic metric space X. A Patterson Sullivan measure ν on ∂X is a limit

$$\lim_{s \searrow \delta} \frac{1}{\sum_{g} e^{-sd(x,gx)}} \sum_{g \in \Gamma} e^{-sd(x,gx)} \delta_{gx}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

where $\delta \geq 0$ is the *critical exponent*

A Patterson Sullivan measure is of quasi-product type

Assume that Γ acts properly and cocompactly on a proper hyperbolic geodesic metric space X. A Patterson Sullivan measure ν on ∂X is a limit

$$\lim_{s \searrow \delta} \frac{1}{\sum_{g} e^{-sd(x,gx)}} \sum_{g \in \Gamma} e^{-sd(x,gx)} \delta_{gx}$$

where $\delta \geq 0$ is the *critical exponent*

A Patterson Sullivan measure is of quasi-product type

Example

Let M be a closed negatively curved manifold. The Bowen-Margulis measure for the geodesic flow Φ^t on the unit tangent bundle T^1M of M projects to a measure of quasi-product type on the boundary $\partial \tilde{M}$ of the universal covering \tilde{M} of M. Let μ be a *regularized* non-atomic Borel-probability measure on B with Γ -invariant measure class and let ν be a Γ -invariant measure on $B \times B - \Delta$ in the measure class of $\mu \times \mu$.

For $\mu \times \mu$ -a.e. $(x, y) \in B \times B$, the Radon Nikodym derivative

$$c^{2}(x,y) = d\nu(x,y)/d(\mu \times \mu)(x,y)$$

exists. Define

$$\Lambda(g,(x,y,t))=(gx,gy,s)$$

if $e^{-t}e^{s}c(g(x,y))/c(x,y)$ is the Jacobian of g at x w.r. to μ .

Let μ be a *regularized* non-atomic Borel-probability measure on B with Γ -invariant measure class and let ν be a Γ -invariant measure on $B \times B - \Delta$ in the measure class of $\mu \times \mu$.

For $\mu \times \mu$ -a.e. $(x, y) \in B \times B$, the Radon Nikodym derivative

$$c^{2}(x,y) = d\nu(x,y)/d(\mu \times \mu)(x,y)$$

exists. Define

$$\Lambda(g,(x,y,t))=(gx,gy,s)$$

if $e^{-t}e^{s}c(g(x,y))/c(x,y)$ is the Jacobian of g at x w.r. to μ .

Proposition

A defines a smooth (=countably separated quotient Borel structure) action of Γ on $(B \times B - \Delta) \times \mathbb{R}$ commuting with the action of \mathbb{R} by translations.

If μ is the Patterson Sullivan measure of the fundamental group Γ of a closed negatively curved manifold M then $\Gamma \setminus (B \times B - \Delta) \times \mathbb{R}$ is the unit tangent bundle T^1M of M, with the geodesic flow Φ^t .

If μ is the Patterson Sullivan measure of the fundamental group Γ of a closed negatively curved manifold M then $\Gamma \setminus (B \times B - \Delta) \times \mathbb{R}$ is the unit tangent bundle T^1M of M, with the geodesic flow Φ^t .

Example

If Γ is a hyperbolic group, with Gromov boundary $\partial\Gamma$, and if μ is the exit measure of a finitely supported symmetric random walk, then μ can be realized as a Borel measure on $\partial\Gamma$. The measure μ is of quasi-product type, and $\Gamma \setminus (B \times B - \Delta) \times \mathbb{R}$ is compact. The translation flow Φ^t is expansive.

If μ is the Patterson Sullivan measure of the fundamental group Γ of a closed negatively curved manifold M then $\Gamma \setminus (B \times B - \Delta) \times \mathbb{R}$ is the unit tangent bundle T^1M of M, with the geodesic flow Φ^t .

Example

If Γ is a hyperbolic group, with Gromov boundary $\partial\Gamma$, and if μ is the exit measure of a finitely supported symmetric random walk, then μ can be realized as a Borel measure on $\partial\Gamma$. The measure μ is of quasi-product type, and $\Gamma \setminus (B \times B - \Delta) \times \mathbb{R}$ is compact. The translation flow Φ^t is expansive.

Babillot 02: Relate mixing of this flow to stable lengths of periodic orbits

Applications 1

Definition

A number $r \ge 0$ is contained in the *ratio set* of a measure class preserving action of Γ on (B, ν) if for $A \subset B$ Borel, $\nu(A) > 0$, $\epsilon > 0 \exists A' \subset A$, $\nu(A') > 0$, $g \in \Gamma$ s.th.

1.
$$gA' \subset A$$

2.
$$\left|\frac{d\nu \circ g}{d\nu} - r\right| < \epsilon$$
 for all $b \in A'$

The action is of type III if the ratio set is infinite, and of type III₁ if the ratio set is all of \mathbb{R}^* .

Applications 1

Definition

A number $r \ge 0$ is contained in the *ratio set* of a measure class preserving action of Γ on (B, ν) if for $A \subset B$ Borel, $\nu(A) > 0$, $\epsilon > 0 \exists A' \subset A, \nu(A') > 0, g \in \Gamma$ s.th.

1.
$$gA' \subset A$$

2. $\left|\frac{d\nu \circ g}{d\nu} - r\right| < \epsilon$ for all $b \in A'$

The action is of type III if the ratio set is infinite, and of type III₁ if the ratio set is all of \mathbb{R}^* .

The *Maharan extension* is the action of Γ on $B \times \mathbb{R}$ defined by

$$g(b,t) = (gb,t - \log(\frac{d\nu \circ g}{d\nu}(b)))$$

preserving the measure $\nu \times \theta$, $d\theta = e^t dt$. The action of type III_1 if and only if the action of Γ on $B \times \mathbb{R}$ is ergodic.

Theorem

Let Γ be a hyperbolic group with Gromov boundary $\partial \Gamma$.

- 1. If ν is a Patterson Sullivan measure of a word metric then the action is of type III (L. Bowen 14), but it is not of type III₁.
- 2. If ν is the exit measure of a finitely supported symmetric random walk and if $\partial \Gamma$ is connected then the action is of type III₁.

Generalizations

Theorem

- 1. (Sun 16) If Γ acts on B as a convergence group then the Gromov boundary of an acylindrically hyperbolic Γ -space admits a Γ -equivariant embedding into B.
- (Maher-Tiozzo 15) If Γ admits an acylindrically action on a hyperbolic space X then the exit measure of any finitely supported symmetric random walk can be realized as a measure on the Gromov boundary of X.

The action of Γ is of type *III* for measures on *B* of quasi-product type, and it is of type *III*₁ for exit measures of finitely supported random walks if *B* is connected.

Applications 2

Let Γ be a hyperbolic group and ν the generating measure of a random walk, finite and symmetric. Then ν defines a *Green's metric d* on Γ .

For R > 0 let N(R) be the number of conjugacy classes of elements of Γ of translation length $\leq R$ for d.

Theorem

There is h > 0 s.th. $N(R) \sim \frac{e^{hR}}{hR}$ as $R \to \infty$.

For word metrics one gets (Coorneart-Knieper 02, H)

Theorem

There are h > 0, 0 < a < b s.th. $N(R) \in [a \frac{e^{hR}}{hR}, b \frac{e^{hR}}{hR}]$ for large R.

Lyapunov exponents

Oseledets multiplicative ergodic theorem: Let Φ^t be a flow on a space X preserving a Borel probability measure μ , $c: X \times \mathbb{R} \to SL(n, \mathbb{R})$ a bounded cocycle for Φ^t ; then there is a measurable filtration $X \times \mathbb{R}^n = A_1 \subset \cdots \subset A_s$, $A_i \to X$ a measurable bundle, and numbers $\kappa_1 < \cdots < \kappa_s$ s.th. for $v \in A_i - A_{i-1}$, a.e. $x \in X$, $\lim_{t\to\infty} \log \|\Phi^t v\| = \kappa_i$.

Lyapunov exponents

Oseledets multiplicative ergodic theorem: Let Φ^t be a flow on a space X preserving a Borel probability measure μ , $c: X \times \mathbb{R} \to SL(n, \mathbb{R})$ a bounded cocycle for Φ^t ; then there is a measurable filtration $X \times \mathbb{R}^n = A_1 \subset \cdots \subset A_s$, $A_i \to X$ a measurable bundle, and numbers $\kappa_1 < \cdots < \kappa_s$ s.th. for $v \in A_i - A_{i-1}$, a.e. $x \in X$, $\lim_{t\to\infty} \log \|\Phi^t v\| = \kappa_i$.

Let Γ be a finitely generated group with universal boundary B, $\rho: \Gamma \to SL(n, \mathbb{R})$ a homomorphism, \tilde{X} a geodesic metric space with cocompact action of Γ , $X = \tilde{X}/\Gamma$ $\Rightarrow \tilde{X} \times \mathbb{R}^n/\Gamma \to X$ is a flat vector bundle with canonical connection which defines a cocycle over any flow Φ^t on X. Then the Lyapunov exponents are defined for a Φ^t -invariant Borel probability measure. The Lyapunov spectrum is simple if $\dim(A_i) - \dim(A_{i-1}) = 1$ for all *i*. This is invariant under a bounded time change of the flow.

Example

Let Φ^t be the geodesic flow on a closed negatively curved manifold M. Let μ be the invariant Gibbs measure defined by the exit measure of a finitely supported random walk on $\pi_1(M)$. Let $\rho : \pi_1(M) \to SL(n, \mathbb{R})$ be a homomorphism with Zariski dense image. Then the Lyapunov spectrum of the cocycle is simple (Guivarch-Raugy, Margulis)

Theorem

Let ν be a measure of product type on a universal boundary B of Γ . Let $\rho : \Gamma \to SL(n, \mathbb{R})$ be a homomorphism with Zariski dense image. The for ν -a.e. $x \in B$, and a geodesic $\gamma : [0, \infty) \to \Gamma$ ending at x, ex. a filtration $A_1 \subset \cdots \subset A_{n-1} \subset \mathbb{R}^n$ s.th. for all $x \in A_i - A_{i-1}, y \in A_{i-1}$ have

$$\lim \inf_{t\to\infty} \log \frac{1}{t} (\log \|c(\gamma(0),t)x\| - \log \|c(\gamma(0),t)y\|) > \epsilon(x) > 0.$$

Theorem

Let ν be a measure of product type on a universal boundary B of Γ . Let $\rho : \Gamma \to SL(n, \mathbb{R})$ be a homomorphism with Zariski dense image. The for ν -a.e. $x \in B$, and a geodesic $\gamma : [0, \infty) \to \Gamma$ ending at x, ex. a filtration $A_1 \subset \cdots \subset A_{n-1} \subset \mathbb{R}^n$ s.th. for all $x \in A_i - A_{i-1}, y \in A_{i-1}$ have

$$\lim \inf_{t\to\infty} \log \frac{1}{t} (\log \|c(\gamma(0),t)x\| - \log \|c(\gamma(0),t)y\|) > \epsilon(x) > 0.$$

Application: If μ is a Φ^t -invariant Borel probability measure for the geodesic flow on M which is of quasi-product type and if $\rho : \pi_1(M) \to SL(n, \mathbb{R})$ is a homomorphism with Zariski dense image then the Lyapunov spectrum of the corresponding cocycle is simple.

Fact: Let Γ be a discrete group acting amenably on a compact space, with invariant measure class μ . Assume that Γ acts on the compact space X. Then \exists equivariant measurable map $(B,\mu) \rightarrow \mathcal{P}(X)$ Furstenberg map where $\mathcal{P}(X)$ is the space of Borel probability measures on X.

Show: Image consists of point masses (use convergence action, can also be done using a *strip condition* in the sense of Kaimanovich).

Apply to action of Γ on the *flag variety*; deduce proximality of the action.

Use *regularity* of a measure of product type to deduce information on Lyapunov exponents.