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The set-up

• A Fuchsian group G (= discrete group of hyperbolic isome-

tries) acting in the hyperbolic disk D = {z ∈ C : |z| < 1}.
• A fundamental domain R and tessellation T of D.

• A set of generators G0 of G given by the elements of G

which pair the sides of R. This labels the sides of R.

• A path from R to gR across T can be recorded by the

sequence of generators labelling the sides which it cuts. This

gives an expression for g as a product of generators. In

particular, a circuit round a vertex gives a relation in G.

• The quotient S = D/G is a surface of constant negative

curvature. It is compact; finite area; infinite area as R is:

(a) inside D; (b) has vertices on D; (c) has intervals on D.

• The limit set Λ ⊂ ∂D = S1 is the set of accumulation

points of G orbits, aka copies of R.



The Bowen-Series map

For simplicity we will state the results for the case when S = D/G is compact;

they extend with minor tweaking to all cases.

A map f : S1 → S1 is called Markov if S1 is partitioned into a finite union of

intervals Ij , disjoint except at their endpoints, such that f(Ij) = ∪ki=1Iji .

Theorem [Bowen-S. 1979] There exists a Markov map f : S1 → S1 such

that the restriction of f to Ij equals some element e ∈ G0. Moreover f is

eventually expanding and closely related to the G action on S1.

If ξ ∈ S1 we define its f -expansion as follows: For e ∈ G0 let

Je = ∪{Iij : f|Iij
= e−1}. Then ξ ∼ (ei1ei2 . . . eik . . .) if ξ ∈ ∩∞k=0f

−k(Jik ).

Let Σ+
G denote the set of f -expansions which occur. Let I be the set of

intervals and let A be the I × I transition matrix (aij) with aij = 1 if

f(Ii) ⊃ Ij and 0 otherwise. Let Σ+
A be the associated finite type shift space.

Corollary The maps Σ+
A → Σ+

G and Σ+
G → S1 are both well defined and

1− 1 except on a countable set of points and conjugate the shifts on Σ+
A ,Σ

+
G

with the map f on S1.



First consequences

The maps Σ+
A → Σ+

G → S1 allow us to more or less identify the f -action on S1

as a subshift of finite type to which we can apply the Bowen theory of Gibbs

states and thermodynamic formalism.

Remark: If D/G has infinite volume then the image of the infinite admissible words is

the limit set Λ of G.

The connection to the G action is very important:

Proposition The actions of G and f on S1 are orbit equivalent :

ξ = gη, g ∈ G iff their f -expansions have the same tails. Moreover each

element of G has a unique shortest representation as a word w which occurs as

an admissible sequence in Σ+
G.

Thus for example, there is a bijection between purely periodic sequences in Σ+
A

and cyclically shortest ‘cyclic words’, aka conjugacy classes, in G.



Origins

Any surface of constant negative curvature can be represented as D/G for

some Fuchsian group G. The geodesic flow on such surfaces was proved to be

ergodic in a famous theorem of E.Hopf (1936). However in a very special

symmetrical case, G. Hedlund (1934) had already given a completely different

proof based on a boundary coding invented by J. Nielsen (1927).

Nielsen’s boundary coding is defined relative to a group G

whose fundamental domain is a regular 4g-gon. Any genus g

surface carries a hyperbolic metric obtained in this way. The

coding expands points on S1 as infinite sequences of genera-

tors of G. Rufus and I observed that the estimates used by

Hedlund look very like those of Gibbs state theory in Rufus’

Springer volume Equilibrium States. Another example is the

classical result that ξ, η ∈ R are equivalent under the action

of GL(2,Z) if and only if their continued fraction expansions

have the same tails.

Gluing opposite

sides of a 16-gon

gives a genus 4

surface.

Thus we conceived the idea of trying to generalise the coding to arbitrary

Fuchsian groups.



Communication

I started discussing this

question with Rufus

sometime in 1977. I

was in Cambridge, and

in those days people

communicated by letter.

In summer 1978, I revisited Berkeley. We started working seriously together,

and then suddenly one weekend Rufus was dead. I would like to quote from the

introduction to our paper:

The writing of this paper has been overshadowed by Rufus’ untimely death in

July. We had intended to write jointly: most of the main ideas were worked out

together and I have done my best to complete them. In sorrow, I dedicate this

work to his memory. Berkeley, September 1978.



Key to the construction

I want to explain the construction in a slightly more general

way than done in our orginal paper. The starting point is a

condition on R called even corners: the extended sides of R
form part of the tessellation T .

Tessellation without

even corners.

Each side s of R is labelled on the outside by some e ∈ G0.

Let H(e) be the closure in D̄ = D∪S1 of the half space cut off

by the extension of s not containing R. Even corners implies

H(e) ∩ H(e′) 6= ∅ for at most one other e′ ∈ G0. Define

f : D \ R → D as follows. On H(e) \ ∪e′ 6=eH(e′) define

f(x) = e−1(x); on H(e) ∩H(e′) make one or other choice.

Tessellation with

even corners.

Why is f|
S1

Markov? Consider the union L of all the sides

of T which go through any vertex of R. Their endpoints

partition S1 into finitely many intervals. Moreover the image

of line in L under either of the possible definitions of f is again

in L. Thus the set of endpoints maps into itself. From this

we see that f is Markov.



Properties of f
Proposition [S. 1991*] • The restriction of f to S1 has all the properties of

a Bowen-Series coding.

• The restriction of f to D reduces length in the sense that if f(gR) = hR
then |h| = |g| − 1.

• Let B(e) = {x ∈ H(e) : f(x) = e−1}. Then ∩kr=0f
−rB(eir ) 6= ∅ iff

ei1ei2 . . . eik is a shortest word in G0; moreover each g ∈ G has a unique

shortest representation of this form.

Thus we have simultaneously constructed a B-S map and solved the word

problem in G in a finite type way.

Generalizations

Proposition [S. 1981] The B-S construction can be extended to general

Fuchsian groups by using f -expansions to define paths in the Cayley graph

which end in suitable endpoints for the intervals I.

Proposition [Rocha 1996] Let G be a Kleinian group whose fundamental

domain in H3 is such that every extended face lies in the tessellation T . Then

one can construct a Markov map f with similar properties to the above.

*Ergodic theory, symbolic dynamics and hyperbolic spaces, Eds. Bedford, Keane, S. OUP 1991.



Uses of the coding

1. Hausdorff dimension of the limit set.

2. Relationship to the geodesic flow; zeta functions and counting problems.

3. Simple geodesics and counting intersection numbers.

4. Generalizations of continued fractions and Diophantine approximation.

5. Random walks on Cayley graphs.

6. Bounded cohomology.

7. Growth functions of groups.

Philosophical remarks Some applications are very specific and depend on

the detail of the coding. Some are not so specific but do depend on properties

of the coding, for example that f is piecewise complex analytic and can be

extended to a neighborhood of each interval of definition.

Some results were orginally proved as extensions of results for free groups using

the specifics of the coding, but have since been extended to much wider classes

of groups.

The coding reveals the finite type or recursive nature of the tessellation and

associated Cayley graph.



Hausdorff dimension

By applying the theory of Gibbs states as in his Springer book Equilibrium

states ..., Bowen proved:

Theorem[Bowen 1979] The Hausdorff dimension of the limit set of a

quasifuchsian group is ≥ 1 with equality if and only if G is Fuchsian, that is,

Λ(G) is a round circle.

Remark This paper was written by Rufus before our work on coding was complete.

According to Dennis Sullivan, it was through studying this paper and seeing that

similar methods could be applied to Julia sets which inspired him to envisage and

develop his famous ‘dictionary’ between Kleinian groups and holomorphic dynamics.

Theorem[Anderson-Rocha 1997] For a large class of Kleinian groups, the

Hausdorff dimension of the limit sets varies real analytically as the groups vary

holomophically.



Geodesic flow
There is an intimate relationship between the B-S coding and geodesic flow on

the unit tangent bundle of a surface S = D/G of constant negative curvature.

Here are two ways of encoding a geodesic γ on S by a bi-infinite string of

generators of G:

Method 1 The labelled sides of R project to lines on S which can

be used as a Poincaré section for the flow. Recording the labels of

the sides cut in order along γ leads to a natural representation of

the flow as a suspension over a shift on a certain subset of infinite

strings of generators.

Method 2 Lift γ to D and record the f -expansions of its two end-

points on S1. This method is less obviously related to the flow but

has the advantage of being finite type.

Sides of R
projected to S.

Theorem [S. 1981, 1986] These two coding methods are sufficiently close, in

a precise sense, that the geodesic flow can be represented by a suspension flow

over ΣA, so that smooth closed geodesics correspond to periodic sequences.

This effectively gives a concrete geometrical Markov partition for the flow. It

has been exploited by Mark Pollicott, Richard Sharp and others in problems

about counting closed geodesics, the Ruelle zeta function etc.



Extending known results for free groups
The free group Fk on k generators can be viewed as a Fuch-

sian group G, giving a special case of the coding. To see

this, take a fundamental domain with 2k sides and no inte-

rior vertices which meets S1 in intervals. The side pairings

generate Fk and Λ is identified with the space of infinite

reduced sequences in the generators.

a

b

b-

a-1

b-

b-1

R

Example 1: Bounded cohomology This is the cohomology Hr
b (G,R)

formed from the complex of continuous functions Crb = {φ : Gr → R} with

bounded image and boundary map δ : Cr → Cr+1: δ(φ)(g0, . . . , gr)

= f(g1 . . . gr) +
∑r
i=1(−1)rφ(g0, . . . , gi−1gi, . . . gr) + (−1)r+1φ(g0 . . . gr−1).

Theorem [Brooks 1980] H2
b (Fk,R) is infinitely generated.

Theorem [Brooks-S. 1982] Same result with Fk replaced by an arbitrary

Fuchsian group.

Theorem [Epstein and Fujiwara 1997] Same result with Fk replaced by

an arbitrary Gromov hyperbolic group.



Example 2: Martin boundaries of random walks

The Cayley graph G of (G,G0) is the graph whose vertices are elements of G

with an edge from g to h whenever g−1h ∈ G0. Given a (finite support)

probability measure p on G, the random walk on G is the walk which jumps

from a vertex v with probability p(g) to the vertex gv. A function on G is

harmonic if h(x) =
∑
g∈G p(g)h(gx).

The Martin boundary is a compactification Ḡ of G such that all positive

harmonic functions can be represented as an integral over the boundary

∂G = Ḡ \ G with respect to the Martin kernel K(x, ξ), x ∈ G, ξ ∈ ∂G.

Theorem [Dynkin and Malyutov 1969] Identify the free group Fk on

k > 1 generators as a Fuchsian group. Then the Martin boundary of a random

walk on Fk is its limit set Λ.

Theorem [S. 1983] Same result with Fk replaced by an arbitrary Fuchsian

group without parabolics (and a minor modification if it has).

Theorem [Kaimanovich 1994] Same result with Fk replaced by an arbitrary

Gromov hyperbolic group G and Λ replaced by the Gromov boundary of G.



Some recent work on ergodic averaging
Joint with Sasha Bufetov and Alexey Klimenko

Suppose given a group G, a symmetric set of generators G0, a measure space

(X, ν) and a measure preserving action of G on X.

Let φ : X → C. For g ∈ G, define Tg(φ)(x) = φ(g−1x). Let sn be the number

of words of length n in the generators G0 and define:

σn(φ)(x) = 1/sn
∑

g∈G,|g|=n

φ(Tg(x)) and cn(φ)(x) = 1/n
∑
m≤n

σn(φ)(x)

Theorem [Bufetov 2002] Let G be the free group, Fk, k > 1. Then if∫
|φ| log+ |φ|dν <∞, the sequence σ2n(φ) converges ν a.e. and in L1 to a

G(2)-invariant function.

Remark Guivarc’h (1969) proved L2-convergence. For p > 1, Nevo and Stein (1994)

proved convergence in Lp and a.e.

Theorem [Bufetov-S. 2011] Let G be a Fuchsian group. For φ ∈ L1, the

Cesàro averages cn(φ) converge a.e. and in L1 to a G(2)-invariant function.

The proof uses Bufetov’s results on Markov operators. Note Tg = Tei1 . . . Teik
where

we express g = ei1 . . . eik using the B-S coding. The proof required checking some

additional properties of the transition matrix A. Recent results by Bufetov et al; and

Pollicott & Sharp extend to word hyperbolic groups.



Convergence of spherical averages
The problem with extending the result on spherical averages

σn(φ)(x) =
∑
g∈G,|g|=n φ(Tg(x)) is that the proof depends heavily on

symmetry of inversion in Fk: namely, if ei1 . . . eik is a reduced word in the

generators, then so is e−1
ik
. . . e−1

i1
. This is used to define a self-adjoint operator

integral to the proof.

At first sight this difficulty seems insurmountable, since defining a canonical

word paths in the Cayley graph round a vertex requires a choice between right

and left, while the inverse path goes round the opposite direction.

However a recent result of Matthew Wroten gets round a similar problem in a

new way. Recall that smooth closed geodesics on D/G correspond bijectively to

conjugacy classes in G.

Theorem [Wroten 2014] Let G be a Fuchsian group. Then with respect to

the uniform distribution on conjugacy classes of length n, the number of

self-intersections approaches a Gaussian distribution as n→∞.

This generalises results of Lalley and Chas (2012) for Fk. A main additional

ingredient is to use an extension of the B-S coding devised by Mark Lustig

(1987) to count intersection numbers.



Wroten’s idea

To prove his result, Wroten devised a coding which has strong properties under

inversion, as follows.

Let g ∈ G and consider the ‘snake’ consist-

ing of all fundamental domains which occur

in any shortest path from R to gR. De-

note the union of all regions in subpaths

of length k by [g]k. The additional regions

forming [g]k+1 are attached to those in [g]k

across certain ‘leading edges’ of [g]k. The

key point is that there are only finitely many

ways in which such attachments can occur;

AND that the process is self-inverse.

It turns out that the new regions are at-

tached across one, two or three edges. The

states will consist of the possible configura-

tions, together with the labels of the attach-

ing edges.

A typical snake

Possible configurations



The self inverse transition matrix

A state is a possible configuration of ‘end’ regions in a snake of length k, to which can

be attached regions forming a snake of length k + 1, together with the ordered labels

of the sides along which the attaching is made.

Proposition [S. 2017] The possible transitions are of finite type with

associated 0− 1 transition matrix A. Let S denote the set of states, among

which are initial states I ⊂ S and final states F ⊂ S. Let Bn denote the set of

finite admissible sequences of length n whose first and last elements belong to

I, F respectively. Then there is a projection Π : Bn → G such that:

(1) Π is a bijection between elements of G of length n and Bn.

(2) there is an involution τ : S → S such that τ(I) = F and such that for

i, j ∈ S we have ai,j = 1 iff aτ(j),τ(i) = 1.

(3) There are two special projections πR, πL : S → G0 which when extended to

Σ+
A give the two usual B-S codings. Moreover πL(i)−1 = πR(τ(i)).

Work in progress Bufetov’s Markov operator P has suitable

self-adjointness and transitivity properties to enable one to apply the method of

[Bufetov 2002]. Hence spherical averages for a Fuchsian group converge as

claimed.



Remark on Wroten’s idea:

Floyd and Plotnick (1987) computed the growth functions f(t) =
∑
n t

nsn of

many Fuchsian groups by showing that the process of passing from

∪g∈G:|g|=ngR to ∪g∈G:|g|=n+1gR is finite type. (Their constructions can be

simplified by use of the B-S coding. )They observed that their process could be

reversed led to the additional result f(t) = f(1/t). This was the origin of the

idea that the coding might be reversible; it took Wroten’s construction to

implement.


