Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC (b ≤ 1)

Conclusion

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Tuesday August 1, 2017

Current Trends in Dynamical Systems and the Mathematical Legacy of Rufus Bowen

= na<</p>

### Lyapunov exponents and nonuniform hyperbolicity

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

#### Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

Let  $F: M \to M$  be a smooth diffeo. of a compact manifold M, dim  $M \ge 2$ .

Question

#### When is

$$\lambda_1(p) \coloneqq \limsup_{n \to \infty} \frac{1}{n} \log \|dF_p^n\| > 0$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

for a **positive volume** subset of  $p \in M$ ?

### Lyapunov exponents and nonuniform hyperbolicity

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

#### Introduction

The model

Main problem: LE

Results I: LE (*b* = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

Let  $F: M \to M$  be a smooth diffeo. of a compact manifold M, dim  $M \ge 2$ .

Question

#### When is

$$\lambda_1(p) \coloneqq \limsup_{n \to \infty} \frac{1}{n} \log \|dF_p^n\| > 0$$

for a **positive volume** subset of  $p \in M$ ?

Positive Lyapunov exponent ⇒ sensitivity to initial conditions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

# Lyapunov exponents and nonuniform hyperbolicity

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

#### Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC (b ≤ 1)

Conclusion

Let  $F: M \to M$  be a smooth diffeo. of a compact manifold M, dim  $M \ge 2$ .

Question

#### When is

$$\lambda_1(p) \coloneqq \limsup_{n \to \infty} \frac{1}{n} \log \|dF_p^n\| > 0$$

for a **positive volume** subset of  $p \in M$ ?

- Positive Lyapunov exponent ⇒ sensitivity to initial conditions
- Nonuniform hyperbolicity: first step towards ergodic components, mixing properties, limit laws, etc...

# Challenges

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

#### Introduction

The model

Main problem: LE

Results I: LE (*b* = 1)

Results II: LE and DoC (b ≤ 1)

Conclusion

### Estimating LE is a **delicate** cancellation problem:

• Growing vectors 'twisted' into contracting directions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Dissipative: presence of sinks of high period
- Conservative: elliptic islands

# Challenges

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC (b ≤ 1)

Conclusion

Estimating LE is a **delicate** cancellation problem:

- Growing vectors 'twisted' into contracting directions
- Dissipative: presence of sinks of high period
- Conservative: elliptic islands

Obstructions are real:

- **Dissipative:** coexistence of wild hyperbolic sets and infinitely many sinks (Newhouse 74)
- **Conservative:** For Chirikov standard map, proliferation of elliptic islands for large set of *L* (Duarte 95)

### Existing positive results

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

#### Introduction

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC (b ≤ 1)

Conclusion



Dissipative:

- Dynamics of Hénon map in (Benedicks & Carleson 91)
- One direction of instability (Wang & Young 01, 08)

Results entail **intensive** parameter exclusion to rule out bad behavior, e.g., formation of sinks.

# Existing positive results

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

#### Introduction

The model

Main problem: LE

Results I: LE (*b* = 1)

Results II: LI and DoC (b ≤ 1)

Conclusion



Dissipative:

- Dynamics of Hénon map in (Benedicks & Carleson 91)
- One direction of instability (Wang & Young 01, 08)

Results entail **intensive** parameter exclusion to rule out bad behavior, e.g., formation of sinks.

#### Conservative:

• (Gorodetski 12) Chirikov standard map:  $\lambda_1 > 0$  on set of Hausdorff dimension 2 (zero volume)

# Our goal:

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (*b* = 1)

Results II: LE and DoC (b ≤ 1)

Conclusion

Natural way of making problem tractable: small random perturbations "unlock" hyperbolicity

- Seek broad applicability: use only 'rough' geometry of hyperbolicity
- Look for checkable conditions: verifiable from **finitely** many iterates

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Not unrealistic: real world is inherently noisy

### The Model: maps with "Hénon flavor"

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal joint work with Jinxin Xue and Lai-Sang Young

Introduction

#### The model

Main problem: LE

Results I: Lt (*b* = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

Write  $C = \mathbb{S}^1 \times \mathbb{R}$  for the cylinder. • Let  $\psi : \mathbb{S}^1 \to \mathbb{R}$  be  $C^3$ ; • let  $a \in \mathbb{S}^1, b \in (0, 1], L > 1$ .

Define  $F : \mathcal{C} \to \mathcal{C}$  by

$$F_{\psi,L,a,b}(x,y) \coloneqq (f_{\psi,L,a}(x) - y, bx).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

where  $f_{\psi,L,a} \coloneqq L\psi(x) + a$ .

### The Model: maps with "Hénon flavor"

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal joint work with Jinxin Xue and Lai-Sang Young

Introduction

#### The model

Main problem: LE

Results I: LE (*b* = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

Write  $C = \mathbb{S}^1 \times \mathbb{R}$  for the cylinder. • Let  $\psi : \mathbb{S}^1 \to \mathbb{R}$  be  $C^3$ ; • let  $a \in \mathbb{S}^1, b \in (0, 1], L > 1$ .

Define  $F : \mathcal{C} \to \mathcal{C}$  by

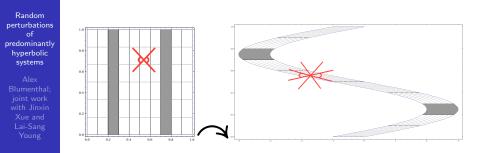
$$F_{\psi,L,a,b}(x,y) \coloneqq (f_{\psi,L,a}(x) - y, bx).$$

where  $f_{\psi,L,a} \coloneqq L\psi(x) + a$ .

Note: F discontinuous along  $\mathcal{D} = \{x = 0\}$  if b < 1.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

# Properties of F



#### Introduction

#### The model

Main problem LE

Results I: LE (b = 1)

Results II: LE and DoC (b ≤ 1)

Conclusion

- *F* is predominantly hyperbolic when  $L \gg 1$ :
  - Everywhere det  $dF \equiv b$ .
  - Outside *critical strips* (shaded), *dF* expands in horizontal cone to order *L*.
  - Width of critical strips is  $O(L^{-1})$ .

### Introducing the random model

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

#### Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

Introduce IID random perturbations:

$$F_{\omega}(x, y) = F(x + \omega, y)$$
$$F_{\underline{\omega}}^{n} := F_{\omega_{n}} \circ \cdots \circ F_{\omega_{1}}$$

Here 
$$\underline{\omega} = (\omega_1, \omega_2, \cdots)$$
, where  $\omega_i \sim \text{Unif}[-\epsilon, \epsilon]$  are IID.

• Heuristically: randomness helps avoid obstructions by "smearing" away

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Not so unnatural: real world is inherently noisy!

## Formulation of problem

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

"Large" perturbations: when  $L \gg 1$ ,  $\epsilon \approx 1$ , simple exercise to show

 $\lambda_1^{\epsilon}(p) \approx \log L$ .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

## Formulation of problem

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC (b ≤ 1)

Conclusion

"Large" perturbations: when  $L \gg 1$ ,  $\epsilon \approx 1$ , simple exercise to show  $\lambda_1^{\epsilon}(p) \approx \log L$ .

### $\mathcal{M}_1(\mathcal{P}) \approx \log \mathcal{L}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

#### Question:

For a given (possibly large) *L*, how small can  $\epsilon$  be for randomness to 'unlock' hyperbolicity of *F*?

# Results: volume-preserving (b = 1)

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The mode

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

### Theorem (Joint with JX, LSY; Ann. Math. )

Assume  $\psi$  satisfies some (checkable) nondegeneracy conditions. Then there exists  $L_0$ , c > 0 such that for any  $L \ge L_0$  and

 $\epsilon > L^{-cL^{9/10}} ,$ 

the top Lyapunov exponent  $\lambda_1^{\epsilon}(p) = \lim_{n \to \infty} \frac{1}{n} \log \| (dF_{\underline{\omega}}^n)_p \|$ exists, is almost surely constant over  $p, \underline{\omega}$ , and satisfies

$$\lambda_1^\epsilon \geq \frac{9}{10} \log L \,.$$

# Results: volume-preserving (b = 1)

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The mode

Main problem: LE

Results I: LE (b = 1)

Results II: LI and DoC  $(b \le 1)$ 

Conclusion

### Theorem (Joint with JX, LSY; Ann. Math. )

Assume  $\psi$  satisfies some (checkable) nondegeneracy conditions. Then there exists  $L_0$ , c > 0 such that for any  $L \ge L_0$  and

 $\epsilon > L^{-cL^{9/10}} \,,$ 

the top Lyapunov exponent  $\lambda_1^{\epsilon}(p) = \lim_{n \to \infty} \frac{1}{n} \log \| (dF_{\underline{\omega}}^n)_p \|$ exists, is almost surely constant over  $p, \underline{\omega}$ , and satisfies

$$\lambda_1^{\epsilon} \geq \frac{9}{10} \log L \,.$$

#### Corollary

Theorem applies to Chirikov standard map

 $F(x,y) = (L\sin(2\pi x) + 2x - y, x).$ 

### Comments on Theorem

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The mode

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusior

- No assumptions made on detailed dynamics of F:
  - Elliptic fixed points and periodic points allowed.
  - Typical length *T* of sojourn to vicinity of elliptic fixed point:

$$T \approx \epsilon^{-1} = L^{cL^{9/10}}.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

### Comments on Theorem

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC (b ≤ 1)

Conclusion

- No assumptions made on detailed dynamics of F:
  - Elliptic fixed points and periodic points allowed.
  - Typical length *T* of sojourn to vicinity of elliptic fixed point:

$$T\approx\epsilon^{-1}=L^{cL^{9/10}}$$

• By precluding elliptic orbits of period  $\leq$  3, we can allow

$$\epsilon > L^{-cL^{19/10}}$$

• Consistent with parameter exclusion ideas in [BC], [WY].

# LE and decay of correlations $(b \leq 1)$

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The mode

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

#### Theorem (Joint with JX and LSY; accepted to CMP)

Let  $\psi$  satisfy same nondegeneracy conditions. Let  $b \in (0,1]$ . Then there exists  $L_0 = L_0(\psi, b) > 0$  such that for any  $L \ge L_0$ and  $\epsilon \ge L^{-9/10}$ , we have

the top Lyapunov exponent λ<sup>ϵ</sup><sub>1</sub> exists almost surely at all points of C, and satisfies λ<sup>ϵ</sup><sub>1</sub> ≥ <sup>9</sup>/<sub>10</sub> log L; and

# LE and decay of correlations $(b \le 1)$

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

#### Theorem (Joint with JX and LSY; accepted to CMP)

Let  $\psi$  satisfy same nondegeneracy conditions. Let  $b \in (0,1]$ . Then there exists  $L_0 = L_0(\psi, b) > 0$  such that for any  $L \ge L_0$ and  $\epsilon \ge L^{-9/10}$ , we have

the top Lyapunov exponent λ<sub>1</sub><sup>ϵ</sup> exists almost surely at all points of C, and satisfies λ<sub>1</sub><sup>ϵ</sup> ≥ <sup>9</sup>/<sub>10</sub> log L; and

• There exists  $K_0 \in \mathbb{N}, \sigma = \sigma(\psi)$  such that

$$\left|\int \phi d(\mu_1 P^n) - \int \phi d(\mu_2 P^n)\right| \leq L^{-\sigma(n-K_0)}$$

for all  $\phi \in L^{\infty}(\mathcal{C})$ ,  $\mu_1, \mu_2$  Borel probabilities on  $\mathcal{C}$ ,  $n \geq K_0$ .

### Comments on Theorem

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusior

- No assumptions on detailed dynamics of *F* sinks could exist!
  - Sinks have basins of size  $O(L^{-1})$ ; perturbations are just large enough to escape with high probability

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

### Comments on Theorem

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

- No assumptions on detailed dynamics of *F* sinks could exist!
  - Sinks have basins of size  $O(L^{-1})$ ; perturbations are just large enough **to escape with high probability**

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Precluding sinks of period  $\leq$  3 permits us to take  $\epsilon \geq L^{-19/10}$  instead.

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

### Argument for ergodicity:

Let  $\delta \in (0, 1)$  and assume  $\epsilon \ge L^{-1+\delta}$ . Will show there exists  $K = K(\delta)$  so that for any  $(X_0, Y_0) \in C$ ,  $X_K$  is distributed with positive density on [0, 1).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

### Argument for ergodicity:

Let  $\delta \in (0, 1)$  and assume  $\epsilon \ge L^{-1+\delta}$ . Will show there exists  $K = K(\delta)$  so that for any  $(X_0, Y_0) \in C$ ,  $X_K$  is distributed with positive density on [0, 1).

• Need only randomization of  $\omega_1$ :

$$\gamma_0 \coloneqq [X_0 - \epsilon, X_0 + \epsilon] \times \{Y_0\}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The mode

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

### Argument for ergodicity:

Let  $\delta \in (0, 1)$  and assume  $\epsilon \ge L^{-1+\delta}$ . Will show there exists  $K = K(\delta)$  so that for any  $(X_0, Y_0) \in C$ ,  $X_K$  is distributed with positive density on [0, 1).

• Need only randomization of  $\omega_1$ :

$$\gamma_0 \coloneqq [X_0 - \epsilon, X_0 + \epsilon] \times \{Y_0\}$$

• For dist $(x, \{f' = 0\}) \ge L^{-1+\delta/2}$ , have  $|f'(x)| \ge L^{\delta/2}$ .

Pick component 
 <sup>×</sup><sub>0</sub> of γ<sub>0</sub> \ {dist(x, {f' = 0}) < L<sup>-1+δ/2</sup>}
 and map forward

•  $\gamma_1 = F(\check{\gamma}_0)$  is horizontal curve, length  $\geq L^{-1+\frac{5}{4}\delta}$ .

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The mode

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

### Argument for ergodicity:

Let  $\delta \in (0, 1)$  and assume  $\epsilon \ge L^{-1+\delta}$ . Will show there exists  $K = K(\delta)$  so that for any  $(X_0, Y_0) \in C$ ,  $X_K$  is distributed with positive density on [0, 1).

• Need only randomization of  $\omega_1$ :

$$\gamma_0 \coloneqq [X_0 - \epsilon, X_0 + \epsilon] \times \{Y_0\}$$

• For dist $(x, \{f' = 0\}) \ge L^{-1+\delta/2}$ , have  $|f'(x)| \ge L^{\delta/2}$ .

- Pick component 
  <sup>→</sup><sub>0</sub> of 
  <sub>γ0</sub> \ {dist(x, {f' = 0}) < L<sup>-1+δ/2</sup>}
  and map forward
- $\gamma_1 = F(\check{\gamma}_0)$  is horizontal curve, length  $\geq L^{-1+\frac{5}{4}\delta}$ .
- Repeating, curves γ<sub>2</sub>, γ<sub>3</sub>, … have successively longer length until K = K(δ), when γ<sub>K</sub> crosses C horizontally.

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

Elaboration on this argument implies:

#### Key Lemma

For any  $(X_0, Y_0)$ , have that  $X_K$  is distributed like

$$(1 - L^{-\delta/4}) \operatorname{Leb}_{[0,1)} + O(L^{-\delta/4})$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Required only randomization of  $\omega_1$ .

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The mode

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

### Estimate LE: suffices to bound

$$\int \log \| (dF_{\omega_{K+2}})_{(X_{K+1},Y_{K+1})} u_{K+1} \| d\mathbb{P}(\omega_1,\cdots,\omega_{K+2}) \approx \log L$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

for arbitrary  $(X_0, Y_0, u_0) \in P(\mathcal{C})$  (projective bundle).

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

### Estimate LE: suffices to bound

~

$$\int \log \| (dF_{\omega_{K+2}})_{(X_{K+1},Y_{K+1})} u_{K+1} \| d\mathbb{P}(\omega_1,\cdots,\omega_{K+2}) \approx \log L$$

for arbitrary  $(X_0, Y_0, u_0) \in P(\mathcal{C})$  (projective bundle).

For each ω<sub>2</sub>,..., ω<sub>K+2</sub> fixed, X<sub>K+2</sub> distributed evenly across [0,1).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The mode

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

#### Conclusion

### Estimate LE: suffices to bound

~

$$\int \log \| (dF_{\omega_{K+2}})_{(X_{K+1},Y_{K+1})} u_{K+1} \| d\mathbb{P}(\omega_1,\cdots,\omega_{K+2}) \approx \log L$$

for arbitrary  $(X_0, Y_0, u_0) \in P(\mathcal{C})$  (projective bundle).

- For each ω<sub>2</sub>,..., ω<sub>K+2</sub> fixed, X<sub>K+2</sub> distributed evenly across [0,1).
- For  $u_{K+1}$ : freeze  $\omega_1, \dots, \omega_K, \omega_{K+2}$ 
  - Nondegeneracy of  $\psi$  implies  $u_{K+1}$  'sufficiently sensitive' to  $\omega_{K+1}$ .

• Implies  $u_{K+1}$  is roughly horizontal with high probability

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The model

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC  $(b \le 1)$ 

Conclusion

### Estimate LE: suffices to bound

$$\int \log \| (dF_{\omega_{K+2}})_{(X_{K+1},Y_{K+1})} u_{K+1} \| d\mathbb{P}(\omega_1,\cdots,\omega_{K+2}) \approx \log L$$

for arbitrary  $(X_0, Y_0, u_0) \in P(\mathcal{C})$  (projective bundle).

- For each ω<sub>2</sub>,..., ω<sub>K+2</sub> fixed, X<sub>K+2</sub> distributed evenly across [0,1).
- For  $u_{K+1}$ : freeze  $\omega_1, \dots, \omega_K, \omega_{K+2}$ 
  - Nondegeneracy of  $\psi$  implies  $u_{K+1}$  'sufficiently sensitive' to  $\omega_{K+1}$ .
  - Implies  $u_{K+1}$  is roughly horizontal with high probability
- Combine:  $|f'_{\omega_{K+2}}(X_{K+1})| \approx L$  and  $u_{K+1}$  roughly horizontal with high probability.

# Conclusion

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal; joint work with Jinxin Xue and Lai-Sang Young

Introduction

The mode

Main problem: LE

Results I: LE (*b* = 1)

Results II: LE and DoC (b ≤ 1)

Conclusion

- Small random perturbations simplify estimate of Lyapunov exponents
- Methods rely only on (checkable) rough geometry of the maps, not on detailed infinite-time dynamics
  - Amenable to broad generalization (e.g. higher dimension)

• Not so unnatural from modeling standpoint: the real world is inherently noisy!

Random perturbations of predominantly hyperbolic systems

Alex Blumenthal joint work with Jinxin Xue and Lai-Sang Young

Introduction

The mode

Main problem: LE

Results I: LE (b = 1)

Results II: LE and DoC (b ≤ 1)

Conclusion

# Thank you!

・ロト ・聞ト ・ヨト ・ヨト

æ