The Irrationality of Pi According to Ivan.

Niven's slick proof of 1946 is here presented in a more leisurely fashion. Its crux is:

$$\int_0^{\pi} x^n (\pi - x)^n \sin(x) dx \in n! \langle \pi^n, \dots, \pi \rangle, \qquad (\dagger)$$

where $\langle ... \rangle$ means "group generated by". This is proved by using (a) integration by parts and (b) the connection between the k-th coefficient a_k of a polynomial and the constant term of its k-th derivative, namely $f^{(k)}(0) = k! a_k$

1. Integration. In the beginning was integration by parts. Since any polynomial fx) will finally run out of non-zero higher derivatives, we have

$$\int f(x)\sin(x)dx = -f(x)\cos(x) + \int f'(x)\cos(x)dx$$
$$= -f(x)\cos(x) + f'(x)\sin(x) + \int f''(x)\sin(x)dx$$
$$= F(x)\sin(x) - G(x)\cos(x).$$

where F(x) and G(x) are alternating sums of higher derivatives of f(x) of odd and even order, respectively.

The context does not matter; any derivation D will do, as long as $D^N f = 0$, and $\cos = D \sin$ with $(D^2 + 1) \sin = 0$. If also $\sin(0) = \sin(\psi) = 0$, we get

$$\int_0^{\psi} f(x)\sin(x)dx = G(0) + G(\psi).$$
 (*)

Again this can be understood formally: the "definite integral" being defined as just the difference between the values at the "limits" of any anti-derivative.

2. Symmetry. As to the nature of G(0), we note: if $f(x) = a_n x^n + a_{n+1} x^{n+1} + \cdots + a_m x^m$, we have $f^{(k)}(0) = k! a_k$, whence

$$G(0) \in n! \langle a_n, \dots, a_m \rangle. \tag{**}$$

To get $G(\psi)$ into the same set, we shall need a suitably symmetric f(x).

Since the reflection $\rho: x \mapsto (\psi - x)$ around $\psi/2$ has order 2, we can make a ρ -invariant function f(x) from any g(x) by setting $f(x) = g(x)g(\psi - x)$. It is entirely symmetric around $\psi/2$. Hence all its even higher derivatives at x = 0 are the same as at $x = \psi$. In the situation above, we now have $G(0) = G(\psi)$. Doing this for $g(x) = x^n$, we get $f(x) = x^n(\psi - x)^n$ whose coefficients are $\{\pm \psi^k \mid 0 \le k \le n\}$ each multiplied by some binomial coefficient, whence (\dagger) as promised at the outset, with ψ replacing π .

3. Irrationality. If now π were rational, say $\pi = a/b$, this would yield

$$\frac{b^n}{n!} \int_0^{\pi} f(x) \sin(x) dx \in \mathbf{Z}. \tag{\ddagger}$$

We finally have to admit that we are working in the real number system, and that our definite integral is *positive*. Choosing n large enough makes (‡) impossible, as the integrand is positive but less than $(\pi/2)^{2n} = (\pi/4)^n \cdot \pi^n$.

4. A Variant. The following simpler variant might serve as an appetizer. By simply differentiating $f(x) \exp(x)$, we get

$$\int f(x) \exp(x) dx = f(x) \exp(x) - \int f'(x) \exp(x) dx = \dots = F(x) \exp(x),$$

where F(x) is an alternating sum of higher derivatives of f(x). Again using $f(x) = x^n(\psi - x)^n$, but choosing $\psi = \log 7$, we get $F(0) = F(\psi) \in n! \langle \psi^n, \dots, \psi \rangle$. If we had $\psi = a/b$, we could conclude

$$\frac{b^n}{n!} \int_0^{\psi} f(x) \exp(x) dx = \frac{b^n}{n!} \cdot 6 F(0) \in \mathbf{Z},$$

and get into the same trouble as before. Of course, any natural number could take the place of 7.