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I .  INTRODUCTION D i f fe ren t ia l  equations of the form 

i x~  : ~ ( I )  

where ~ is a closed 1 form (Hamiltonian) and w is a closed 2 form (Lagrange 

bracket) f requent ly ar ise in physics. I f  m is symplect~c such equations have 

unique solut ions. 1 However m is often presymplectic ( i . e .  B : X-~ ixm is not an 

isomorphism). This occurs, e .g . ,  ( i )  for  many i n f i n i t e  dimensional systems, 

( i i )  a p ~ o ~  - as in KUnzle's 2 treatment of  a spinning par t i c le  in curved space- 

time, ( i i i )  for  systems derived from degenerate Lagrangians ( i . e . ,  the f i be r  deriva- 

t i ve  I FL : TQ-*T*Q is not a diffeomorphism)as in grav i ty  and electromagnetism. 

I f  m is presymplectic nei ther  existence nor uniqueness of solut ions to the system 

( I )  is guaranteed. 

We present a geometric constra int  algorithm which provides the necessary 

and s u f f i c i e n t  condit ions for  the existence of solut ions to the generalized 

Hamilton equations ( I )  on a ( f i n i t e  o r  i n f i n i t e  dimensional) presymplectic manifold 

(M,m). We discuss the appl icat ion of  our algorithm to Lagrangian and Hamiltonian 

systems and indicate i t s  re la t ionsh ip  to the Dirac theory of constraints.  We also 

discuss the non-uniqueness of  the solut ions of ( I )  and present an algorithm for  

determining the associated "space of true degrees of freedom". 

2. THE CONSTRAINT ALGORITHM 3 Our const ra in t  algorithm f inds the u~que maximal 
i N 

submanifold N ~M along which ( l )  possesses solut ions tangent to N. This f i na l  
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Const ra in t  submanifold is  the l i m i t  N ~ aM~ of  a s t r i ng  of  sequen t i a l l y  constructed 

cons t ra i n t  submanifolds 4 

M~+ 1 ~ {m ~ M~I a m ~ ~(TmM~)} (2) 

(wi th  M 1 ~ M) which f o l l ow  from apply ing consistency cond i t ions  5 to ( I ) .  

Theorem The presymplect ic Hamil tonian system ( I )  has so lu t ions  i f  N is non-empty, 

in  which case we have cons is ten t  equations of  motion along the f i n a l  cons t ra in t  

submanifold N 

0 = ( ix~  - a) l  N ~ T~M (3) 

w i th  so lu t ions  X c TN. 

I f  ~ is  closed and TM is r e f l e x i v e  Banach (which we henceforth assume) an 

equ iva len t  but much more convenient charac te r i za t ion  of  the cons t ra in t  submanifolds 

is  

M~+ 1 ~ {m ~ M~] <TM~I~> m = O} (4) 

where TW ~ e {Z e TM I m(y,z) = 0 V Y e TW} is the presymplect ic orthogonal comple -~ 

ment. 

3. DIRAC CONSTRAINT THEORY When appl ied to systems described by degenerate 

Lagrangians our a lgor i thm s i g n i f i c a n t l y  general izes as wel l  as g loba l i zes  the local  

Dirac-Bergmann (DB) theory of  cons t ra in t s~  '7 In t h i s  case M ~ FL(TQ) 3~T*Q is 

Di rac 's  primary cons t ra in t  submanifold, m z j *~  w i th  ~ being the canonical symplec- 

t i c  s t ruc tu re  on T'Q, and ~ = dH where the Hamil tonian H s a t i s f i e s  

H o FL = E L (5) 

w i th  EL(V ) ~ <vlFL(v)> - L(v) .  

The DB cons t ra in t  theory works on a l l  o f  phasespace (T'Q) and proceeds to 

f i nd  ( a n a l y t i c a l l y )  an extension of  H to T*Q and secondary cons t ra in ts  which w i l l  

guarantee preservat ion of a l l  cons t ra in ts .  Our (geometri~ a lgor i thm works d i r e c t l y  

on the primary cons t ra in t  submanifold M. The cons t ra in t  func t ions  <TM~I~> 

in  (4) correspond to Di rac 's  secondary cons t ra in ts .  

In recent years there has been some nice work done in  g iv ing  a symplect ic 

geometric descr ip t ion  of  the resu l ts  o f  the DB cons t ra in t  theory.  (See the works 
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of Sniatycki~ Tulczjew,9Lichnerowicz~OMarsden and Weinstein I I  and ref .  3.) Our 

work ( fo l lowing the presymplectic approach of H i n d ~  geometrizes the constra int  

algori thm i t s e l f  and thereby complements and extends th is  descr ipt ion.  

In constrast to the Dirac method, our algori thm does not a p~uLo~L 

require M to be a submanifold of some given symplectic manifold (e.g. T'Q). This 

fact  is responsible for  the wide range of  a p p l i c a b i l i t y  of the algorithm. 

4. LAGP~ANGIAN SYSTEMS Our constra int  algorithm can be applied d i r ec t l y  to the 

inherent ly  presymplectic Lagrange equations 

ixR k : dE E (6) 

on ve loc i ty  phase space TQ. The presymplectic form ~L is FL*m or equiva lent ly  

- dJ*dL where J* is  the ad jo in t  of Klein'~Cmost~nge~ts~u~tu~e 

J : TTQ --->TTQ 

which sa t i s f ies  

ker J = Im J = V(TQ) z ker TTQ . 

The a b i l i t y  of our algorithm to deal d i r ec t l y  with Lagrangian systems on TQ is of 

pa r t i cu la r  importance because the f i be r  der ivat ive FL may be too pathological for  

a Hamiltonian formalism to ex is t  in T*Q. (For example (5) may not define a s ingle 

valued funct ion H.) There are two special cases of in te res t .  

De f i n i t i on  L is almost reg~14if  FL is a submersion onto i t s  image and the f ibers 

of FL are connected. 

De f in i t i on  L is q ~ i - r e g ~  i f  the lea f  space TQ/(ker FL,) of the f o l i a t i o n  of 

TQ generated by the invo lu t i ve  d i s t r i bu t i on  ker FL, is a manifold s'uch that the 

canonical project ion is a submersion. (Note almost regular implies quasi - regular . )  

Theorem 15 I f  L is almost regular there ex is ts  a corresponding Hamiltonian formula- 

t ion  of  the dynamics on a submanifold of T*Q and the Lagrangian and Hamiltonian 

formalisms are eq~Lv~Ze~t ( i . e .  each constra int  submanifold of the Lagrangian 

system maps onto a corresponding const ra in t  submanifold for  the Hamiltonian system). 

Theorem I f  L is quasi-regular there is  a corresponding equivalent generalized 

Hamiltonian system; however i t  is  not given on a submanifold of T*Q but rather 
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on the lea f  space TQ/(ker FL.). 

4A. Second Order Equation Problem Lagrangian systems d i f f e r  from Hamiltonian 

systems in that  from both physical I and var ia t iona l  16 viewpoints the Lagrange 
17 

equations (6) must be supplemented by the 2nd order equation condi t ion 

TTQX = TTQX (7) 

This condition was f i r s t  investigated for homogeneous degenerate Lagrangians by 

KUnzle 18 who considered only degeneracies which arise from the homogeneity. He 

developed an algorithm which in principle solves the problem, but he gave no 

specific results in the general case. We have taken a different approach and 

considered the general degenerate Lagrangian,finding that (7) is compatible with 

our constraint algorithm. 

Theorem 19 I f  L is quasi-regular there exists a l to l correspondence between 

solutions to (6,7) and solutions to the corresponding generalized Hamiltonian 

system on TQ/(ker FL,). 

5. NON-UNIQUENESS OF SOLUTIONS Presymplectic Hamiltonian systems in general do 

not have unique solut ions.  To any vector f i e l d  X ~ TN sa t i s fy ing  (3) along the 

f ina l  constra int  submanifold N N>MI one can add any element Y in 

K1 ~ TN ~ TM~ (8) 

(These vector f ie lds  are generated by Dirac's primary I s t  class const ra in ts . )  

The presence of  these "gauge" vector f ie lds  indicates that N contains redundant 

information. For cer ta in purposes (e.g. quant izat ion) one would l i ke  to el iminate 

th is  redundant information by construct ing a reduced phase space (RPS) i .e .  a 

"space of true degrees of freedom". One would l i ke  the RPS to be a symplectic 

manifold with a unique evolut ion determined by a Hamiltonian system. 

5A. Standard RPS A reduced phase space can be constructed as fo l lows:  pu l l  

back (3) to N obtaining 

ix~ N : a N (9) 

where a N z i ~  and mN z i ~ .  The solut ions to (9) are unique up to elements in 
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K N z TN ~ TN ~ ,  ( I0) 

the charac ter is t i c  vector f i e lds  ofmN. These vector f ie lds  form an invo lu t i ve  

d i s t r i bu t i on  which determines a f o l i a t i o n  of N. On the leaf  space of th is  f o l i a t i o n  

N z N/(KN) there is a symplectic (hence unique solut ion)  Hamiltonian system 

i ~  ~ : % (l l)  

induced by (9) - i .e .  our constra int  algori thm guarantees that  ~ is adm~sibZe for  

N in the sense of Lichnerowicz. I0 We ca l l  N the standard RPS. Regarding N as the 

"space of true degrees of freedom" of  the system is equivalent to regarding a l l  of 

K N as gauge vector f ie lds  which corresponds to Dirac's extended Hamiltonian using 

a l l  I s t  class constraints (primary and secondary) as gauge generators. Dirac 

himself was uncertain as to whether th is  was correct - " I  th ink i t  may be that a l l  

the f i r s t - c l a s s  secondary constraints should be included among the transformations 

which don' t  change the physical state,  but I haven't been able to prove i t .  ''20 

5B. Gauge Vector Field Algorithm (GVA) RPS 21 In order to see how the manifest K 1 

gauge invariance of (3) could imply K N gauge invariance we have developed a gauge 

vector f i e l d  algorithm (GVA) for  ext ract ing the "hidden" gauge transformations 

in (3). The associated GVA RPS is obtained by "moding out" the "gauge d i rect ions"  

in N: i .e .  one wants to i den t i f y  points connected by "gauge vector f i e lds "  (GVF's) 

since such points can be reached from the same i n i t i a l  data. The set of GVF's can 

be considerably larger than K 1 fo r  i f  Z is a GVF then so is [X,Z] where X is any 

solut ion to (3). This fol lows from the diagram 

X 

I X , Z ]  

Z 

X X 

A s im i la r  construct ion shows that [Z,Y] is a GVF whenever Z and Y are GVF's. 

Star t ing from G 1 z K 1 (the manifest ly obvious GVF's) and i t e ra t i ng  one obtains the 

Lmp~icL~t GVF's 
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G~+ 1 z G~ + [G~,G~] + [X,G~] (12) 

whose l im i t  is an involutive distr ibution G - the Lie module generated by (~x)~KI . 

The associated GVA RPS is the leaf space N z N/(G) of the fo l ia t ion generated by 

G. Is the GVA RPS the same as the standard RPS? 

Theorem G = K N i f f  the fX~ust cZ~s co~a.L~t~ <Kc[~> are "good" constraints 

( i .e.  their di f ferent ials do not vanish along N) where KC z TN n TM~ . 

In general G is a proper Lie submodule of K N ( i .e.  some Ist  class secondary con- 

straints do not generate gauge transformations of (3)) and consequently N is larger 

thanN. In general N is inherently presymplectic. (In fact N can be odd dimen- 

sional!) Whenever G # K N there is no natural symplectic Hamiltonian system on 

for the unique evolution X ~ TN. Consequently regarding N as the space of true 

degrees of freedom has some undesirable features (e.g. How would one quantize such 

a system?). On the other hand ~ has the virtue of l i t e r a l l y  respecting the equa- 

tions of motion (4). 

Which RPS is the "space of true degrees of freedom"? 

5C. A Possible Resolution I f  the Hamiltonian contains a b u i l t  in gauge condi t ion 

then G w i l l  respect i t  whi le K N w i l l  not. So i t  may be possible to i n te rp re t  

G }~ K N as a consequence of b u i l t  in gauge condi t ions.  Two examples may c l a r i f y  

th is  point.  Consider the Lagrangian densi t ies  

~ = - ¼ FPVFpv - 2~ (~p AIJ)2 

~X~ : - ½ (@pA)@PA ~ - AP@~, - ½,2 

where ~ is a Lagrange mul t ip l ier  and F - ~ A ~ A . 

Maxwell's equations and the Lorentz condition @ A ]J = O. p 

system as electromagnetism with the Lorentz gauge condition imposed then i t  is 

easy to understand why G ~ K N, for G respects the Lorentz condition while K N does 

not. The Lagrangian density (14) in fact yields the same effective equations as 

(13), though now one may be tempted to interpret i t  as what i t  appears to be - not 

E&M but an entirely dif ferent (massless, spin l ,  divergence free) f ie ld .  This 

(13) 

(14) 

From (13) one obtains 

I f  we i n te rp re t  th is  
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is the GVA in terpre ta t ion  of both (13) and (14). Thus whether or not Dirac's 

conjecture is correct (and which RPS is correct) depends on one's physical in terpre-  

ta t ion of the system. In general our algorithm permits a whole class of in terpre-  

tat ions bounded by one (G) which extracts the gauge invariance of a given 

Lagrangian (and y ie lds  an inherent ly  presymplectic RPS) and the standard one (KN) 

which extracts the maximum possible invariance of the given system (and has a 

symplectic Hamiltonian system for  the unique evolut ion on i t s  RPS). The former 

v io lates Dirac's conjecture while the l a t t e r  sa t i s f ies  i t  by in te rpre t ing  G ~ K N 

to be en t i r e l y  a consequence of  b u i l t - i n  gauge condit ions. 
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