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1. INTRODUCTION Differential eguations of the form

in=oc m
where o is a closed 1 form (Hamiltonian) and w is a closed 2 form (Lagrange
bracket) frequently arise in physics. If w is symplectic such equations have
unique so]utions.1 However w is often presymplectic (i.e. B : X~ 1Xw is not an
isomorphism). This occurs, e.g., (i) for many infinite dimensional systems,

2

(ii) a prioni - as in Kiinzle's” treatment of a spinning particle in curved space-

time, (iii) for systems derived from degenerate Lagrangians (i.e., the fiber deriva-
tivel FL TQ - T*Q is not a diffeomorphism)as in gravity and electromagnetism.

If w is presymplectic neither existence nor uniqueness of solutions to the system
(1) is guaranteed.

We present a geometric constraint algorithm which provides the necessary
and sufficient conditions for the existence of solutions to the generalized
Hamilton equations (1) on a (finite or infinite dimensional) presymplectic manifold
(Myw). We discuss the application of our algorithm to Lagrangian and Hamiltonian
systems and indicate its relationship to the Dirac theory of constraints. We also

discuss the non-uniqueness of the solutions of (1) and present an algorithm for

determining the associated "space of true degrees of freedom".

2. THE CONSTRAINT ALGORITHM3 Our constraint algorithm finds the unique maximal

i
submanifold N —s M along which (1) possesses solutions tangent to N. This final
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constraint submanifold is the 1limit N = /le of a string of sequentially constructed

constraint submanifo]ds4

M£+] = {me M£| o, € B(TmMR)} (2)
5

(with M] = M) which follow from applying consistency conditions® to (1).

Theorem The presymplectic Hamiltonian system (1) has solutions if N is non-empty,
in which case we have consistent equations of motion along the final constraint
submanifold N
= 1 - *|
0 (1Xw a)IN € TNM (3)

with solutions X € TN.

If B is closed and TM is reflexive Banach (which we henceforth assume) an
equivalent but much more convenient characterization of the constraint submanifolds
is

Mpgp = (e M| <TMi|a> = 0} (4)
where TW' = {Z e TM | w(Y,Z) = 0 ¥ Y ¢ TW} 1s the presymplectic orthogonal comple--

ment.

3. DIRAC CONSTRAINT THEQORY When applied to systems described by degenerate

Lagrangians our algorithm significantly generalizes as well as globalizes the local
Dirac-Bergmann (DB) theory of constraints.’7 In this case M = FL(TQ)-Q+ T*Q is
Dirac's primary constraint submanifold, w = j*Q with Q being the canonical symplec-
tic structure on T*Q, and o = dH where the Hamiltonian H satisfies

HoFL =g (5)
with EL(V) = <y|FL{v)> - L(v).

The DB constraint theory works on all of phasespace (T*Q) and proceeds to
find (analytically) an extension of H to T*Q and secondary constraints which will
guarantee preservation of all constraints. OQur (geometric) algorithm works directly
on the primary constraint submanifold M. The constraint functions <TM;|a>
in (4) correspond to Dirac's secondary constraints.

In recent years there has been some nice work done in giving a symplectic

geometric description of the results of the DB constraint theory. (See the works
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of §niatyck1§ Tu]czjew,gLichnerowicleMarsden and Weinstein]1. and ref. 3.) Our

work (following the presymplectic approach of Hindst% geometrizes the constraint
algorithm itself and thereby complements and extends this description.

In constrast to the Dirac method, our algorithm does not a priori
require M to be a submanifold of some given symplectic manifold (e.g. T*Q). This

fact is responsible for the wide range of applicability of the algorithm.

4. LAGRANGIAN SYSTEMS Our constraint algorithm can be applied directly to the

inherently presymplectic Lagrange equations

1,9 = df (6)
on velocity phase space TQ. The presymplectic form QL is FL*w or equivalently
- dJ*dL where J* is the adjoint of Klein'st3a£m04t Zangent strweture

J: TTQ — TTQ
which satisfies

ker J = Im J = V(TQ) = ker TTQ .
The ability of our algorithm to deal directly with Lagrangian systems on TQ is of
particular importance because the fiber derivative FL may be too pathological for
a Hamiltonian formalism to exist in T*Q. (For example (5) may not define a single
valued function H.) There are two special cases of interest.

Definition L is almost neguﬂaa]4

if FL is a submersion onto its image and the fibers
of FL are connected.

Definition L is quasi-regufar if the leaf space TQ/(ker FL,) of the foliation of

TQ generated by the involutive distribution ker FL, is a manifold such that the

canonical projection is a submersion. (Note almost regular implies quasi-regular.)

Theorem]S If L is almost regular there exists a corresponding Hamiltonian formula-
tion of the dynamics on a submanifold of T*Q and the Lagrangian and Hamiltonian
formalisms are equivalent (i.e. each constraint submanifold of the Lagrangian

system maps onto a corresponding constraint submanifold for the Hamiltonian system).

Theorem If L is quasi-regular there is a corresponding equivalent generalized

Hamiltonian system; however it is not given on a submanifold of T*Q but rather
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on the leaf space TQ/(ker FLy4).

4A. Second Order Equation Problem Lagrangian systems differ from Hamiltonian

systems in that from both physica]1 and var‘iational]6 viewpoints the Lagrange

17
equations (6) must be supplemented by the 2nd order equation condition

T']_'QX = TTQX . (7)
This condition was first investigated for homogeneous degenerate Lagrangians by
Kiinz]e]8 who considered only degeneracies which arise from the homogeneity. He

developed an algorithm which in principle solves the problem, but he gave no
specific results in the general case. We have taken a different approach and
considered the general degenerate Lagrangian,finding that (7) is compatible with

our constraint algorithm.

Theorem]9 If L is quasi-regular there exists a 1 to 1 correspondence between

solutions to (6,7) and solutions to the corresponding generalized Hamiltonian

system on TQ/(ker FLs).

5. NON-UNIQUENESS OF SOLUTIONS Presymplectic Hamiltonian systems in general do

not have unique solutions. To any vector field X ¢ TN satisfying (3) along the
final constraint submanifold N —ﬂe My one can add any element Y in

Ky = NN T L (8)
(These vector fields are generated by Dirac's primary 1st class constraints.)
The presence of these "gauge" vector fields indicates that N contains redundant
information. For certain purposes (e.g. quantization) one would like to eliminate
this redundant information by constructing a neduced phase space (RPS) i.e. a

"space of true degrees of freedom". One would like the RPS to be a symplectic

manifold with a unique evolution determined by a Hamiltonian system.

5A. Standard RPS A reduced phase space can be constructed as follows: pull
back (3) to N obtaining
= o (9)

where Oy = iﬁa and wy = iﬁw. The solutions to (9) are unique up to elements in
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Ky = TN A TN, (10)

the characteristic vector fields of wN' These vector fields form an involutive

distribution which determines a foliation of N. On the leaf space of this foliation

N = N/(KN) there is a symplectic (hence unique solution) Hamiltonian system

¥R T o (an
induced by (9) - i.e. our constraint algorithm guarantees that & is admissibfe for

N in the sense of L1'chne1f‘ow1'cz.]0

We call N the standard RPS. Regarding N as the
"space of true degrees of freedom" of the system is equivalent to regarding all of
KN as gauge vector fields which corresponds to Dirac's extended Hamiltonian using
all 1st class constraints (primary and secondary) as gauge generators. Dirac
himself was uncertain as to whether this was correct - "I think it may be that all

the first-class secondary constraints should be inciuded among the transformations

which don't change the physical state, but I haven't been able to prove 1t."20

5B. Gauge Vector Field Algorithm (GVA) RPSZT

In order to see how the manifest K]
gauge invariance of (3) could imply KN gauge invariance we have developed a gauge
vector field algorithm (GVA) for extracting the "hidden" gauge transformations

in (3). The associated GVA RPS is obtained by "moding out" the "gauge directions"
in N: 1i.e. one wants to identify points connected by "gauge vector fields" (GVF's)
since such points can be reached from the same initial data. The set of GVF's can
be considerably larger than Ky for if Z is a GVF then so is [X,Z] where X is any

solution to (3). This follows from the diagram

X
[X,7]

X X
A similar construction shows that [Z,Y] is a GVF whenever Z and Y are GVF's.
Starting from G1 = K.l (the manifestly obvious GVF's) and iterating one obtains the

Amplicit GVF's
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Gz+] = Gl + [Gg,Gz] + [X,Gz] (12)
whose 1imit is an involutive distribution G - the Lie module generated by (zfX)QK].
The associated GVA RPS is the leaf space i = N/(G) of the foliation generated by
G. TIs the GVA RPS the same as the standard RPS?

Theorem G = Ky iff the §inst class constraints <K2|u> are "good" constraints

(i.e. their differentials do not vanish along N) where K2 =TN N TME .

In general G is a proper Lie submodule of KN (i.e. some 1st class secondary con-
straints do not generate gauge transformations of (3)) and consequently N is larger
than N. 1In general N is inherently presymplectic. (In fact N can be odd dimen-
sionall) Whenever G # KN there is no natural symplectic Hamiltonian system on N
for the unique evolution X & TN. Consequently regarding N as the space of true
degrees of freedom has some undesirable features (e.g. How would one quantize such
a system?). On the other hand N has the virtue of literally respecting the equa-
tions of motion (4).

Which RPS is the "space of true degrees of freedom"?

5C. A Possible Resolution If the Hamiltonian contains a built in gauge condition

then G will respect it while KN will not. So it may be possible to interpret

G # K. as a consequence of built in gauge conditions. Two examples may clarify

N
this point. Consider the Lagrangian densities

N T 1y2
P 7 PR - an (3 A7) (13)

Ed

where A is a Lagrange multiplier and Fuv = auAv - BvAu' From (13) one obtains

Maxwell's equations and the Lorentz condition auAu = 0. If we interpret this

-1 MAV _ pHy o - A 42
5 (auAv)a AY - A 30 - 59" . (14}

system as electromagnetism with the Lorentz gauge condition imposed then it is
easy to understand why G # KN’ for G respects the Lorentz condition while KN does
not. The Lagrangian density (14) in fact yields the same effective equations as
(13), though now one may be tempted to interpret it as what it appears to be - not

E&M but an entirely different (massless, spin 1, divergence free) field. This
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is the GVA interpretation of both {13) and (14). Thus whether or not Dirac's

conjecture is correct (and which RPS is correct) depends on one's physical interpre-

tation of the system. In general our algorithm permits a whole class of interpre-
tations bounded by one (G) which extracts the gauge invariance of a given
Lagrangian (and yields an inherently presymplectic RPS) and the standard one (KN)
which extracts the maximum possible invariance of the given system (and has a
symplectic Hamiltonian system for the unique evolution on its RPS). The former
violates Dirac's conjecture while the latter satisfies it by interpreting G # KN

to be entirely a consequence of built-in gauge conditions.
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