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Overview:

Now | use space + time decompositions to reformulate CFTs as
infinite-dimensional dynamical systems. Once a slicing by
Cauchy surfaces is specified,

@ I'll recover instantaneous Lagrangian & Hamiltonian
mechanics on appropriate spaces of fields

@ discuss the standard initial value analysis

@ define the energy-momentum mapping
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Cauchy Surfaces & Spaces of Fields

e Let X be a closed n-manifold, and Emb(X, X) the
space of all embeddings ¥ — X. For 7 € Emb(X, X),
view ¥, := 7(X) as a Cauchy surface.

e If K — X is abundle, let K, be the restriction of K to
Y, C X LetK, =T(K, — %,).

e the instantaneous configuration space at “time” 7 is
V-
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@ The smooth (or L?) cotangent space to K, at ¢ is
TiK ={m: L, = L(VK,\"%,) ‘ T covers o},

where L(VK,\"%;) is the vector bundle over K whose fiber
at k € Ky is the set of linear maps from Vi K to AJ% .

@ The pairing of T}k, with T,/ is given by integration:

(7, V) _/TW(V).

@ In adapted coordinates (X, is locally x® = 0), 7 € T}KC, is

7 =madk? @ d"X
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Canonical Forms |

@ The Liouville form on the 7-phase space T*); is given in
the ‘usual’ manner:

0. (. m)(V) = / (Try, 7oy, - V)

T

for (p,m) € T* ).
@ The 7-symplectic form is then w, = —d#,.

@ In adapted coordinates,

o (ip, ) = / (A A dma) @ d™%.

T



Multisymplectic — Instantaneous Phase Spaces J




Multisymplectic — Instantaneous Phase Spaces J

@ Consider the vector bundle map
R . Z — T,

over Y, given by

where ¢ = yz o 0.



Multisymplectic — Instantaneous Phase Spaces J

@ Consider the vector bundle map
R . Z — T,

over Y, given by

where ¢ = myz o 0. Locally,

R.(c) = / o2 dy? @ d™x (1)

.



@ R, is a submersion with kernel
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@ R, is a submersion with kernel
{aA’dyA AdX; + (poo) d”“x} .
so therefore

ker TR.(0) = {5;:, 5(;} (2)

@ So we recover the instantaneous phase space from the
covariant one. What about the canonical forms?
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@ On Z. there is the canonical 1-form:
0.(o)(V) = /z o (iy0),
whereoc € Z., V € T,Z,, and © is the canonical

(n+ 1)-form on Z. The canonical two-form Q. on Z; is
Q, =—-do,.

Proposition




@ Q. is closed, but not symplectic:



@ Q. is closed, but not symplectic:

w0 ()



@ Q. is closed, but not symplectic:

w0 ()

Comparing with (2), we conclude

Proposition
(T*Yr,w;) is the reduction of (Z;,Q;) by ker Q.




@ Q. is closed, but not symplectic:

e {55}

Comparing with (2), we conclude

Proposition
(T*Yr,w;) is the reduction of (Z;,Q;) by ker Q.

@ So the instantaneous framework is obtained from the
covariant formalism via symplectic reduction.



@ Q. is closed, but not symplectic:

e {55}

Comparing with (2), we conclude

Proposition
(T*Yr,w;) is the reduction of (Z;,Q;) by ker Q.

@ So the instantaneous framework is obtained from the
covariant formalism via symplectic reduction.

@ From (1) the instantaneous momenta are just 74 = pA°.
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Instantaneous Dynamics

To discuss how fields evolve, we must define a global notion of
“time." This is accomplished by introducing “slicings" of
spacetime and the relevant bundles over it.

@ Aslicing of an (n+ 1)-dimensional spacetime X consists of
a reference n-dimensional Cauchy surface ¥ and a
diffeomorphism

sy xR — X.

@ The generator of sx is the vector field
0

— Tsx . —.
(x SX " 3y

@ We similarly slice bundles over X.



¥ x {A}

/I

Figure: A slicing of spacetime

By general covariance, slicings (=~ coordinates) have no
physical significance. So the flow of ¢ must consist of gauge
transformations: ¢ € g.



Jet Decomposition Map |




Jet Decomposition Map |

We now do “covariant — instantaneous” on the Lagrangian
side: space + time split the jet bundle using a slicing.



Jet Decomposition Map |

We now do “covariant — instantaneous” on the Lagrangian
side: space + time split the jet bundle using a slicing.

Let ¢ := (y be the generator of the slicing on Y; ¢ a section of
Y — X. Set

p:=0¢|L, and ¢:=Lco|L,

(Recall: Ly¢p := Top- (x — C o ¢.)
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We now do “covariant — instantaneous” on the Lagrangian
side: space + time split the jet bundle using a slicing.

Let ¢ := (y be the generator of the slicing on Y; ¢ a section of
Y — X. Set

p:=0¢|L, and ¢:=Lco|L,

(Recall: Ly¢p := Top- (x — C o ¢.)

Proposition

The jet decomposition map (JY), — J(Y;) x VY, given by
Jjo(x) = (p(x), ¢(x))

is an isomorphism.
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Locally this splitting amounts to

Xy i) = Oy A VA )

where
yh=gnA, =
which reduces to y# = v4; in adapted coordinates.

Corollary
The jet decomposition map induces an isomorphism

(V)r ~ TV,

where (j))- is the collection of restrictions of holonomic
sections of JY — X to X,.
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for (p,¢) € TY; and where i; is the inclusion ¥, — X.



The Instantaneous Lagrangian |

@ Thisis

Loclipe) = [ i (G2 £0i0)),
for (p,¢) € TY; and where i; is the inclusion ¥, — X.

@ In adapted coordinates

Lrc(p. ¢ / L(jip, ¢)¢°d xo.

@ Analysis now proceeds as always.
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@ The diagram commutes:

@ Define the covariant primary constraint set to be
N=FLJY)CZ
and with a slight abuse of notation, set

Nr =FL((jY)-) C Z-.



@ Then
R-(N;) = P

where P, . is the instantaneous 7-primary constraint set.

In particular, P ¢ is independent of ¢, and so can be
denoted simply P;.



@ Then
R-(N;) = P

where P, . is the instantaneous 7-primary constraint set.

In particular, P ¢ is independent of ¢, and so can be
denoted simply P;.

@ So we equally well arrive at the cusp of the Hamiltonian
formalism covariantly or instantaneously.
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As always, the instantaneous Hamiltonian is given by

HT:C(%W) = <7T7 ()0> - LT,C((P, ()0)

and is defined only on P;.

Let (¢, ) € P,. Then for any holonomic lift o of (¢, 7) to Z-,

Hrcloim) == [ 0*(¢z 3 @)

T

@ Note the crucial role played by the slicing generator .

@ Observe also that H, ¢ is linear in ¢!
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Bosonic String: )
@ Consider a slicing with (gauge) generator
0 0
— = @ o _
C= ¢~ (oo PpaC0) + 200, ) -

@ The instantaneous Lagrangian is

LT,C((Pahv 9.0’ h) =
1 1 00, . :
- 2/{ V_thB(COhOO(‘PA — (D)7 ~ ¢'DYP)
+2h0"(¢* — ' Dp*) DB

+C0h11D4pADgoB>d1XO, where Do” = gpAJ.
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@ The instantaneous momenta are

— _FQAB< hOO( C1 D(pB) + o1 DQOB>

CO
w’” = 0.
@ Thus the primary constraint set is

Pr={(p,h,m,w) € T"Y: | w™ = 0}.



@ The instantaneous momenta are

— _FQAB< hOO( C1 D(pB) + o1 DQOB>

CO
w’? = 0.
@ Thus the primary constraint set is
7)7- = {(gp, h,T(',W) S T*yT ‘ w"p = 0} .
@ The Hamiltonian is

H; (o, hm @) =

1 h01
[ (s + 02+ (s ") (- 09)) o'

where 72 := g*Bramg and - Dy := maDyA, etc.
g 2



@ 1+1 split the metric h a la ADM as (with v = hy4):

hOO h01 -1 /N2 M/N2
Q10 pi1 M/NZ ’}/_1 _M2/N2
Furthermore, the metric volume +/—h decomposes as

V=h=N,~

@ Then the Hamiltonian reduces to:

HT,C((Pv ha T, LTJ) =

LO 2 2 0 (. ]
LT(2WCN( +D?) + (M + ¢ D@))dxo_
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@ Note the combinations ¢(°N/,/7 and (°M + ¢' of kinematic
fields (components of h) which appear linearly in this
expression; these are atlas fields.

@ Also note the factors (72 + Dy?) and 7 - Dy; these are the
string superhamiltonian and supermomentum, resp.

@ We have an induced presymplectic structure on P, pulled
back from T*).. ltis:

wrlp.hmm) = [ (de A dna) o d,

T
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@ We must solve Hamilton’s equations
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Initial Value Analysis

We will explore this by means of the bosonic string example.

@ We must solve Hamilton’s equations
Xr Jwr =dH ¢ (3)
for the evolution vector field X on P;.

@ This is not guaranteed, as w. is merely presymplectic;
dH. . may not be in the range of the flat map.



Write

A
X, — dy 5+d7rA i+ dh,, 6’
dx ) dph ad\ ] omy d\ ) dohs,

@ Then

X, Jwy = / [ <dd9§ ) dra+ (Z;‘) quA] ®d'xy (4)

Note there are no terms involving differentials of the metric.



@ On the other hand, after several integrations by parts,

ON ON
i [ e o[

H(OM+¢Nar - Dy — D (M + () - d)

+%<0(n2 + Dy?)]d (\%)

+ (- Dy)aM| @ d'x (5)



@ Comparing (4) with (5), we can solve for X; provided
™+ Dp?=0 and 7-Dp=0

These are the superhamiltonian and supermomentum
initial value constraints. They define the secondary
constraint set P> C P.



@ Comparing (4) with (5), we can solve for X; provided
™+ Dp?=0 and 7-Dp=0

These are the superhamiltonian and supermomentum
initial value constraints. They define the secondary
constraint set P> C P.

@ So we have on P»

dp? CO 0

d ONn
% = gasD (g\ﬁDSOB> +D ((COMJr C1)7TA)
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@ dh,,/dX undetermined; h,, are kinematic fields

@ One checks that X is tangent to P,, so there are no
further constraints.

@ On the instantaneous level, the gauge transformations are
generated by the Hamiltonian vector fields

K )
+gasD | —-D B) 2
9ns (\ﬁ 7 ) 5ma

K 4B )
XKﬁ—\/,»yg T8 A
(6)

J J
~ = Ai -
X3 = LDy 5 + D(LWA)&TA

of K$ and LJ restricted Pic, respectively, together with the
§/0hs,
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@ The evolution is totally gauge.

@ The effect of making a gauge transformation is to change
the slicing.

(] HT,C|P2:O
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The Energy-Momentum Map

@ Suppose a group G acts on K — X by bundle
automorphisms. Then n € G acts on sections o by

(o) = nk o omy

@ The corresponding infinitesimal generator is
Ek(o) = —Leo
@ CAVEAT: In general, G will not act on K; and K, if G acts
nontrivially on X.

This is where our “troubles” begin.



@ Let G act on Z by special covariant canonical
transformations with multimomentum map J. Even though
G may not act on Z,, we may still define the
energy-momentum map
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@ If G stabilizes ¥, then E. will be a genuine momentum
map.



@ Let G act on Z by special covariant canonical
transformations with multimomentum map J. Even though
G may not act on Z,, we may still define the
energy-momentum map

E;: 2, —g"
by
E).0= [ o) %
@ If G stabilizes ¥, then E. will be a genuine momentum
map.

E. drops to the instantaneous energy-momentum map
& Pr—g.




Let € € g. If {x is everywhere transverse to ¥, then

<5T(9077T)a§> = = r,f(%”)




Let € € g. If {x is everywhere transverse to ¥, then

<5T(9077T)a§> = = r,f(%”)

@ But £: makes sense regardless of transversality
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(& (i, h,m), (€, 0))

= — LO 2 2 0 Y ’
B /ZT(zﬁfN( + Dg?) + (€M +€')( D<p)>dx0,

@ From this one can read off the string superhamiltonian

’
H= E(WZ + Dy?)

and the string supermomentum

J=mn-Dep.



@ Thus as claimed in the Introduction £ = —(9, J), that is,
the superhamiltonian and supermomentum are the
components of the instantaneous energy-momentum map.



@ Thus as claimed in the Introduction £ = —(9, J), that is,
the superhamiltonian and supermomentum are the
components of the instantaneous energy-momentum map.

@ The supermomentum by itself is a component of the
momentum map 7. for the stabilizer group G of ¥, which
does act in the instantaneous formalism, unlike G.



