MOMENTUM MAPS & CLASSICAL FIELDS

3. Canonical Field Theory

MARK J. GOTAY

Now I use space + time decompositions to reformulate CFTs as infinite-dimensional dynamical systems.

Now I use space + time decompositions to reformulate CFTs as infinite-dimensional dynamical systems. Once a slicing by Cauchy surfaces is specified,

 I'll recover instantaneous Lagrangian & Hamiltonian mechanics on appropriate spaces of fields

Now I use space + time decompositions to reformulate CFTs as infinite-dimensional dynamical systems. Once a slicing by Cauchy surfaces is specified,

- I'll recover instantaneous Lagrangian & Hamiltonian mechanics on appropriate spaces of fields
- discuss the standard initial value analysis

Now I use space + time decompositions to reformulate CFTs as infinite-dimensional dynamical systems. Once a slicing by Cauchy surfaces is specified,

- I'll recover instantaneous Lagrangian & Hamiltonian mechanics on appropriate spaces of fields
- discuss the standard initial value analysis
- define the energy-momentum mapping

Cauchy Surfaces & Spaces of Fields

• Let Σ be a closed n-manifold, and $\operatorname{Emb}(\Sigma, X)$ the space of all embeddings $\Sigma \to X$. For $\tau \in \operatorname{Emb}(\Sigma, X)$, view $\Sigma_{\tau} := \tau(\Sigma)$ as a Cauchy surface.

Cauchy Surfaces & Spaces of Fields

- Let Σ be a closed n-manifold, and $\operatorname{Emb}(\Sigma, X)$ the space of all embeddings $\Sigma \to X$. For $\tau \in \operatorname{Emb}(\Sigma, X)$, view $\Sigma_{\tau} := \tau(\Sigma)$ as a Cauchy surface.
- If $K \to X$ is a bundle, let K_{τ} be the restriction of K to $\Sigma_{\tau} \subset X$. Let $\mathcal{K}_{\tau} = \Gamma(K_{\tau} \to \Sigma_{\tau})$.

Cauchy Surfaces & Spaces of Fields

- Let Σ be a closed n-manifold, and $\operatorname{Emb}(\Sigma, X)$ the space of all embeddings $\Sigma \to X$. For $\tau \in \operatorname{Emb}(\Sigma, X)$, view $\Sigma_{\tau} := \tau(\Sigma)$ as a Cauchy surface.
- If $K \to X$ is a bundle, let K_{τ} be the restriction of K to $\Sigma_{\tau} \subset X$. Let $\mathcal{K}_{\tau} = \Gamma(K_{\tau} \to \Sigma_{\tau})$.
- the instantaneous configuration space at "time" au is $\mathcal{Y}_{ au}$

The Tangent Space

The Tangent Space

The tangent space to \mathcal{K}_{τ} at σ is

$$\mathcal{T}_{\sigma}\mathcal{K}_{ au} = \left\{ \mathit{W} : \Sigma_{ au}
ightarrow \mathit{VK} \mid \mathit{W} \; \mathsf{covers} \; \sigma
ight\},$$

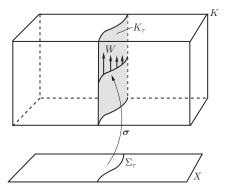
where VK denotes the vertical tangent bundle of K.

The Tangent Space

The tangent space to \mathcal{K}_{τ} at σ is

$$\mathcal{T}_{\sigma}\mathcal{K}_{ au} = \left\{ \mathit{W} : \Sigma_{ au}
ightarrow \mathit{VK} \mid \mathit{W} \; \mathsf{covers} \; \sigma
ight\},$$

where VK denotes the vertical tangent bundle of K.



The Cotangent Space

• The smooth (or L^2) cotangent space to \mathcal{K}_{τ} at σ is

$$T_{\sigma}^* \mathcal{K}_{\tau} = \left\{ \pi : \Sigma_{\tau} \to \mathcal{L}(VK, \Lambda^n \Sigma_{\tau}) \mid \pi \text{ covers } \sigma \right\},$$

where $L(VK, \Lambda^n\Sigma_{\tau})$ is the vector bundle over K whose fiber at $k \in K_X$ is the set of linear maps from V_kK to $\Lambda_X^n\Sigma_{\tau}$.

The Cotangent Space

• The smooth (or L^2) cotangent space to \mathcal{K}_{τ} at σ is

$$T_{\sigma}^* \mathcal{K}_{\tau} = \left\{ \pi : \Sigma_{\tau} \to \mathit{L}(\mathit{VK}, \Lambda^n \Sigma_{\tau}) \mid \pi \text{ covers } \sigma \right\},$$

where $L(VK, \Lambda^n\Sigma_{\tau})$ is the vector bundle over K whose fiber at $k \in K_x$ is the set of linear maps from V_kK to $\Lambda_x^n\Sigma_{\tau}$.

• The pairing of $T_{\sigma}^* \mathcal{K}_{\tau}$ with $T_{\sigma} \mathcal{K}_{\tau}$ is given by integration:

$$\langle \pi, V \rangle = \int_{\Sigma_{\tau}} \pi(V).$$

The Cotangent Space

• The smooth (or L^2) cotangent space to \mathcal{K}_{τ} at σ is

$$T_{\sigma}^* \mathcal{K}_{\tau} = \left\{ \pi : \Sigma_{\tau} \to \mathcal{L}(VK, \Lambda^n \Sigma_{\tau}) \mid \pi \text{ covers } \sigma \right\},$$

where $L(VK, \Lambda^n\Sigma_{\tau})$ is the vector bundle over K whose fiber at $k \in K_X$ is the set of linear maps from V_kK to $\Lambda_X^n\Sigma_{\tau}$.

• The pairing of $T_{\sigma}^* \mathcal{K}_{\tau}$ with $T_{\sigma} \mathcal{K}_{\tau}$ is given by integration:

$$\langle \pi, V \rangle = \int_{\Sigma_{\tau}} \pi(V).$$

• In adapted coordinates (Σ_{τ} is locally $x^0 = 0$), $\pi \in T_{\sigma}^* \mathcal{K}_{\tau}$ is

$$\pi = \pi_A dk^A \otimes d^n x_0$$

Canonical Forms

• The Liouville form on the τ -phase space $T^*\mathcal{Y}_{\tau}$ is given in the 'usual' manner:

$$heta_{ au}(arphi,\pi)(extbf{ extit{V}}) = \int_{\Sigma_{ au}} \pi(au_{\mathcal{Y}_{ au}, au^*\mathcal{Y}_{ au}}\cdot extbf{ extit{V}})$$

for
$$(\varphi, \pi) \in T^* \mathcal{Y}_{\tau}$$
.

Canonical Forms

• The Liouville form on the τ -phase space $T^*\mathcal{Y}_{\tau}$ is given in the 'usual' manner:

$$heta_{ au}(arphi,\pi)(extbf{ extit{V}}) = \int_{\Sigma_{ au}} \pi(extbf{ au}\pi_{\mathcal{Y}_{ au}, extbf{ au}^*\mathcal{Y}_{ au}}\cdot extbf{ extit{V}})$$

for
$$(\varphi, \pi) \in T^* \mathcal{Y}_{\tau}$$
.

• The τ -symplectic form is then $\omega_{\tau} = -d\theta_{\tau}$.

Canonical Forms

• The Liouville form on the τ -phase space $T^*\mathcal{Y}_{\tau}$ is given in the 'usual' manner:

$$heta_{ au}(arphi,\pi)(extbf{ extit{V}}) = \int_{\Sigma_{ au}} \pi(extbf{ au}\pi_{\mathcal{Y}_{ au}, extbf{ au}^*\mathcal{Y}_{ au}}\cdot extbf{ extit{V}})$$

for
$$(\varphi, \pi) \in T^* \mathcal{Y}_{\tau}$$
.

- The τ -symplectic form is then $\omega_{\tau} = -d\theta_{\tau}$.
- In adapted coordinates,

$$\omega_{\tau}(\varphi,\pi) = \int_{\Sigma_{\tau}} (d\varphi^{A} \wedge d\pi_{A}) \otimes d^{n}x_{0}.$$

$\textbf{Multisymplectic} \rightarrow \textbf{Instantaneous Phase Spaces}$

Multisymplectic → Instantaneous Phase Spaces

Consider the vector bundle map

$$R_{\tau}:\mathcal{Z}_{ au} o T^{*}\mathcal{Y}_{ au}$$

over \mathcal{Y}_{τ} given by

$$\langle R_{ au}(\sigma), V \rangle = \int_{\Sigma_{ au}} \varphi^*(V \perp \sigma),$$

where $\varphi = \pi_{YZ} \circ \sigma$.

Multisymplectic → Instantaneous Phase Spaces

Consider the vector bundle map

$$R_{\tau}: \mathcal{Z}_{\tau} \to T^*\mathcal{Y}_{\tau}$$

over \mathcal{Y}_{τ} given by

$$\langle \mathcal{R}_{ au}(\sigma), V \rangle = \int_{\Sigma_{ au}} \varphi^*(V \perp \sigma),$$

where $\varphi = \pi_{YZ} \circ \sigma$. Locally,

$$R_{\tau}(\sigma) = \int_{\Sigma_{\tau}} \sigma_{A}{}^{0} \, dy^{A} \otimes d^{n} x_{0} \tag{1}$$

• R_{τ} is a submersion with kernel

$$\left\{\sigma_A{}^idy^A\wedge d^nx_i+(p\circ\sigma)\,d^{n+1}x\right\}.$$

so therefore

$$\ker TR_{\tau}(\sigma) = \left\{ \frac{\delta}{\delta \rho_{A}^{i}}, \frac{\delta}{\delta \rho} \right\}$$
 (2)

• R_{τ} is a submersion with kernel

$$\left\{\sigma_A{}^idy^A\wedge d^nx_i+(p\circ\sigma)\,d^{n+1}x\right\}.$$

so therefore

$$\ker TR_{\tau}(\sigma) = \left\{ \frac{\delta}{\delta \rho_{A}^{i}}, \frac{\delta}{\delta \rho} \right\} \tag{2}$$

 So we recover the instantaneous phase space from the covariant one. What about the canonical forms? • On \mathcal{Z}_{τ} there is the canonical 1-form:

$$\Theta_{\tau}(\sigma)(V) = \int_{\Sigma_{\tau}} \sigma^*(i_V \Theta),$$

where $\sigma \in \mathcal{Z}_{\tau}$, $V \in T_{\sigma}\mathcal{Z}_{\tau}$, and Θ is the canonical (n+1)-form on Z. The canonical two-form Ω_{τ} on \mathcal{Z}_{τ} is $\Omega_{\tau} = -d\Theta_{\tau}$.

• On \mathcal{Z}_{τ} there is the canonical 1-form:

$$\Theta_{\tau}(\sigma)(V) = \int_{\Sigma_{\tau}} \sigma^*(i_V \Theta),$$

where $\sigma \in \mathcal{Z}_{\tau}$, $V \in T_{\sigma}\mathcal{Z}_{\tau}$, and Θ is the canonical (n+1)-form on Z. The canonical two-form Ω_{τ} on \mathcal{Z}_{τ} is $\Omega_{\tau} = -d\Theta_{\tau}$.

Proposition

$$\Omega_{\tau}(\sigma)(V,W) = \int_{\Sigma_{\tau}} \sigma^*(\mathbf{i}_W \mathbf{i}_V \Omega)$$

$$\ker\Omega_{\tau}(\sigma) = \left\{\frac{\delta}{\delta \rho_{\text{A}}{}^{i}}, \frac{\delta}{\delta \rho}\right\}$$

$$\ker\Omega_{ au}(\sigma)=\left\{rac{\delta}{\delta {m
ho_{m A}}^i},rac{\delta}{\delta {m
ho}}
ight\}$$

Comparing with (2), we conclude

Proposition

 $(T^*\mathcal{Y}_{\tau},\omega_{\tau})$ is the reduction of $(\mathcal{Z}_{\tau},\Omega_{\tau})$ by $\ker\Omega_{\tau}$

$$\ker\Omega_{ au}(\sigma)=\left\{rac{\delta}{\deltaoldsymbol{
ho_{A}}^{i}},rac{\delta}{\deltaoldsymbol{
ho}}
ight\}$$

Comparing with (2), we conclude

Proposition

 $(T^*\mathcal{Y}_{\tau},\omega_{\tau})$ is the reduction of $(\mathcal{Z}_{\tau},\Omega_{\tau})$ by ker Ω_{τ}

 So the instantaneous framework is obtained from the covariant formalism via symplectic reduction.

$$\ker\Omega_{ au}(\sigma)=\left\{rac{\delta}{\deltaoldsymbol{
ho_{A}}^{i}},rac{\delta}{\deltaoldsymbol{
ho}}
ight\}$$

Comparing with (2), we conclude

Proposition

 $(T^*\mathcal{Y}_{\tau},\omega_{\tau})$ is the reduction of $(\mathcal{Z}_{\tau},\Omega_{\tau})$ by ker Ω_{τ}

- So the instantaneous framework is obtained from the covariant formalism via symplectic reduction.
- From (1) the instantaneous momenta are just $\pi_A = \rho_A^0$.

To discuss how fields evolve, we must define a global notion of "time." This is accomplished by introducing "slicings" of spacetime and the relevant bundles over it.

To discuss how fields evolve, we must define a global notion of "time." This is accomplished by introducing "slicings" of spacetime and the relevant bundles over it.

 A slicing of an (n+1)-dimensional spacetime X consists of a reference n-dimensional Cauchy surface Σ and a diffeomorphism

$$\mathfrak{s}_X: \Sigma \times \mathbb{R} \to X.$$

To discuss how fields evolve, we must define a global notion of "time." This is accomplished by introducing "slicings" of spacetime and the relevant bundles over it.

 A slicing of an (n+1)-dimensional spacetime X consists of a reference n-dimensional Cauchy surface Σ and a diffeomorphism

$$\mathfrak{s}_X: \Sigma \times \mathbb{R} \to X.$$

• The generator of \mathfrak{s}_X is the vector field

$$\zeta_X = T\mathfrak{s}_X \cdot \frac{\partial}{\partial \lambda}.$$

To discuss how fields evolve, we must define a global notion of "time." This is accomplished by introducing "slicings" of spacetime and the relevant bundles over it.

 A slicing of an (n+1)-dimensional spacetime X consists of a reference n-dimensional Cauchy surface Σ and a diffeomorphism

$$\mathfrak{s}_X: \Sigma \times \mathbb{R} \to X.$$

• The generator of \mathfrak{s}_X is the vector field

$$\zeta_X = T\mathfrak{s}_X \cdot \frac{\partial}{\partial \lambda}.$$

• We similarly slice bundles over X.

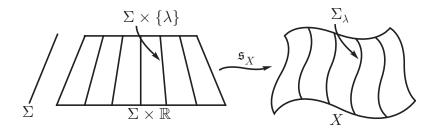


Figure: A slicing of spacetime

By general covariance, slicings (\approx coordinates) have no physical significance. So the flow of ζ must consist of gauge transformations: $\zeta \in \mathfrak{g}$.

Jet Decomposition Map

Jet Decomposition Map

We now do "covariant \rightarrow instantaneous" on the Lagrangian side: space + time split the jet bundle using a slicing.

Jet Decomposition Map

We now do "covariant \rightarrow instantaneous" on the Lagrangian side: space + time split the jet bundle using a slicing.

Let $\zeta := \zeta_Y$ be the generator of the slicing on Y; ϕ a section of $Y \to X$. Set

$$arphi := \phi \, ig| \, \Sigma_ au \quad ext{and} \quad \dot{arphi} := \mathbb{L}_\zeta \phi \, ig| \, \Sigma_ au$$

(Recall:
$$\mathbb{L}_{\zeta}\phi := T\phi \cdot \zeta_{X} - \zeta \circ \phi$$
.)

Jet Decomposition Map

We now do "covariant \rightarrow instantaneous" on the Lagrangian side: space + time split the jet bundle using a slicing.

Let $\zeta := \zeta_Y$ be the generator of the slicing on Y; ϕ a section of $Y \to X$. Set

$$arphi := \phi \, ig| \, \Sigma_ au \quad ext{and} \quad \dot{arphi} := \mathbb{L}_\zeta \phi \, ig| \, \Sigma_ au$$

(Recall: $\mathbb{L}_{\zeta}\phi := T\phi \cdot \zeta_X - \zeta \circ \phi$.)

Proposition

The jet decomposition map $(JY)_{\tau} \to J(Y_{\tau}) \times VY_{\tau}$ given by

$$j\phi(x) \mapsto (j\varphi(x), \dot{\varphi}(x))$$

is an isomorphism.

Locally this splitting amounts to

$$(x^{i}, y^{A}, v^{A}_{\mu}) \mapsto (x^{i}, y^{A}, v^{A}_{j}, \dot{y}^{A})$$

where

$$\dot{\mathbf{y}}^{\mathbf{A}} = \zeta^{\mu} \mathbf{v}^{\mathbf{A}}_{\ \mu} - \zeta^{\mathbf{A}}$$

which reduces to $\dot{y}^A = v^A_0$ in adapted coordinates.

Locally this splitting amounts to

$$(x^i,y^A,v^A_{\mu})\mapsto (x^i,y^A,v^A_j,\dot{y}^A)$$

where

$$\dot{\mathbf{y}}^{\mathbf{A}} = \zeta^{\mu} \mathbf{v}^{\mathbf{A}}_{\ \mu} - \zeta^{\mathbf{A}}$$

which reduces to $\dot{y}^A = v^A_0$ in adapted coordinates.

Corollary

The jet decomposition map induces an isomorphism

$$(j\mathcal{Y})_{\tau} \approx T\mathcal{Y}_{\tau}$$

where $(j\mathcal{Y})_{\tau}$ is the collection of restrictions of holonomic sections of $JY \to X$ to Σ_{τ} .

The Instantaneous Lagrangian

The Instantaneous Lagrangian

This is

$$L_{ au,\zeta}(arphi,\dot{arphi}) = \int_{\Sigma_{ au}} i_{ au}^* \left(\zeta_{ extbf{X}} \perp \mathcal{L}(j\phi) \right),$$

for $(\varphi, \dot{\varphi}) \in T\mathcal{Y}_{\tau}$ and where i_{τ} is the inclusion $\Sigma_{\tau} \to X$.

The Instantaneous Lagrangian

This is

$$L_{ au,\zeta}(\varphi,\dot{\varphi}) = \int_{\Sigma_{-}} i_{ au}^{*} \left(\zeta_{X} \perp \mathcal{L}(j\phi) \right),$$

for $(\varphi, \dot{\varphi}) \in T\mathcal{Y}_{\tau}$ and where i_{τ} is the inclusion $\Sigma_{\tau} \to X$.

In adapted coordinates

$$L_{\tau,\zeta}(\varphi,\dot{\varphi}) = \int_{\Sigma_{\tau}} L(j\varphi,\dot{\varphi})\zeta^0 d^n x_0.$$

Analysis now proceeds as always.

The Legendre Transformation

The Legendre Transformation

• The diagram commutes:

$$(j^{1}\mathcal{Y})_{\tau} \xrightarrow{\mathbb{F}\mathcal{L}} \mathcal{Z}_{\tau}$$
 $\beta_{\zeta} \downarrow \qquad \qquad \downarrow R_{\tau}$
 $T\mathcal{Y}_{\tau} \xrightarrow{\mathbb{F}L_{\tau,\zeta}} T^{*}\mathcal{Y}_{\tau}$

The Legendre Transformation

• The diagram commutes:

$$\begin{array}{ccc} (j^{1}\mathcal{Y})_{\tau} & \xrightarrow{\mathbb{F}\mathcal{L}} & \mathcal{Z}_{\tau} \\ \beta_{\zeta} \downarrow & & \downarrow R_{\tau} \\ T\mathcal{Y}_{\tau} & \xrightarrow{\mathbb{F}L_{\tau,\zeta}} & T^{*}\mathcal{Y}_{\tau} \end{array}$$

Define the covariant primary constraint set to be

$$N = \mathbb{F}\mathcal{L}(JY) \subset Z$$

and with a slight abuse of notation, set

$$\mathcal{N}_{\tau} = \mathbb{F}\mathcal{L}((i\mathcal{Y})_{\tau}) \subset \mathcal{Z}_{\tau}.$$

Then

$$R_{\tau}(\mathcal{N}_{\tau}) = \mathcal{P}_{\tau,\zeta}.$$

where $\mathcal{P}_{\tau,\zeta}$ is the instantaneous τ -primary constraint set.

In particular, $\mathcal{P}_{\tau,\zeta}$ is independent of ζ , and so can be denoted simply \mathcal{P}_{τ} .

Then

$$R_{\tau}(\mathcal{N}_{\tau}) = \mathcal{P}_{\tau,\zeta}.$$

where $\mathcal{P}_{\tau,\zeta}$ is the instantaneous τ -primary constraint set.

In particular, $\mathcal{P}_{\tau,\zeta}$ is independent of ζ , and so can be denoted simply \mathcal{P}_{τ} .

 So we equally well arrive at the cusp of the Hamiltonian formalism covariantly or instantaneously.

Hamiltonian Dynamics

Hamiltonian Dynamics

As always, the instantaneous Hamiltonian is given by

$$\mathcal{H}_{ au,\zeta}(arphi,\pi) = \langle \pi,\dot{arphi}
angle - \mathcal{L}_{ au,\zeta}(arphi,\dot{arphi})$$

and is defined only on \mathcal{P}_{τ} .

Thm

Let $(\varphi, \pi) \in \mathcal{P}_{\tau}$. Then for any holonomic lift σ of (φ, π) to \mathcal{Z}_{τ} ,

$$H_{\tau,\zeta}(\varphi,\pi) = -\int_{\Sigma_{\tau}} \sigma^*(\zeta_Z \perp \Theta).$$

• Note the crucial role played by the slicing generator ζ.

Hamiltonian Dynamics

As always, the instantaneous Hamiltonian is given by

$$H_{ au,\zeta}(arphi,\pi) = \langle \pi,\dot{arphi} \rangle - \mathsf{L}_{ au,\zeta}(arphi,\dot{arphi})$$

and is defined only on \mathcal{P}_{τ} .

Thm

Let $(\varphi, \pi) \in \mathcal{P}_{\tau}$. Then for any holonomic lift σ of (φ, π) to \mathcal{Z}_{τ} ,

$$H_{\tau,\zeta}(\varphi,\pi) = -\int_{\Sigma_{\tau}} \sigma^*(\zeta_Z \perp \Theta).$$

- Note the crucial role played by the slicing generator ζ.
- Observe also that $H_{\tau,\zeta}$ is linear in ζ !

• EXERCISE: Prove this result. See §6.2 of the notes.

- EXERCISE: Prove this result. See §6.2 of the notes.
- Observe also that $H_{\tau,\zeta}$ is linear in ζ !

Bosonic String:

Bosonic String:

Consider a slicing with (gauge) generator

$$\zeta = \zeta^{\mu} \frac{\partial}{\partial x^{\mu}} - \Big((h_{\sigma\alpha} \zeta^{\alpha}_{,\rho} + h_{\rho\alpha} \zeta^{\alpha}_{,\sigma}) + 2\lambda h_{\sigma\rho} \Big) \frac{\partial}{\partial h_{\sigma\rho}}$$

Bosonic String:

Consider a slicing with (gauge) generator

$$\zeta = \zeta^{\mu} \frac{\partial}{\partial x^{\mu}} - \left((h_{\sigma\alpha} \zeta^{\alpha}_{,\rho} + h_{\rho\alpha} \zeta^{\alpha}_{,\sigma}) + 2\lambda h_{\sigma\rho} \right) \frac{\partial}{\partial h_{\sigma\rho}}$$

• The instantaneous Lagrangian is

$$\begin{split} L_{\tau,\zeta}(\varphi,h,\dot{\varphi},\dot{h}) &= \\ &-\frac{1}{2}\int_{\Sigma_{\tau}}\sqrt{-h}\,g_{AB}\bigg(\frac{1}{\zeta^{0}}h^{00}(\dot{\varphi}^{A}-\zeta^{1}D\varphi^{A})(\dot{\varphi}^{B}-\zeta^{1}D\varphi^{B}) \\ &+2h^{01}(\dot{\varphi}^{A}-\zeta^{1}D\varphi^{A})D\varphi^{B} \\ &+\zeta^{0}h^{11}D\varphi^{A}D\varphi^{B}\bigg)d^{1}x_{0}, \quad \text{where} \quad D\varphi^{A} := \varphi^{A}_{,1}. \end{split}$$

• The instantaneous momenta are

$$egin{align} \pi_{A} &= -\sqrt{-h}\,g_{AB}igg(rac{1}{\zeta^{0}}h^{00}(\dot{arphi}^{B}-\zeta^{1}Darphi^{B})+h^{01}Darphi^{B}igg) \ &arphi^{\sigma
ho} = 0. \end{split}$$

The instantaneous momenta are

$$\pi_A = -\sqrt{-h}\,g_{AB}igg(rac{1}{\zeta^0}h^{00}(\dotarphi^B-\zeta^1Darphi^B)+h^{01}Darphi^Bigg) \ arphi^{\sigma
ho}=0.$$

Thus the primary constraint set is

$$\mathcal{P}_{ au} = \left\{ (arphi, h, \pi, arpi) \in \mathit{T}^*\mathcal{Y}_{ au} \; \middle| \; arpi^{\sigma
ho} = \mathbf{0}
ight\}.$$

• The instantaneous momenta are

$$\pi_A = -\sqrt{-h}\,g_{AB}igg(rac{1}{\zeta^0}h^{00}(\dotarphi^B-\zeta^1Darphi^B)+h^{01}Darphi^Bigg) \ arphi^{\sigma
ho} = 0$$

• Thus the primary constraint set is

$$\mathcal{P}_{\tau} = \{ (\varphi, h, \pi, \varpi) \in T^* \mathcal{Y}_{\tau} \mid \varpi^{\sigma \rho} = 0 \}.$$

The Hamiltonian is

 $H_{\tau,c}(\varphi,h,\pi,\varpi) =$

$$-\int_{\Sigma_{\tau}} \left(\frac{1}{2h^{00}\sqrt{-h}} \zeta^{0} (\pi^{2} + D\varphi^{2}) + \left(\frac{h^{01}}{h^{00}} \zeta^{0} - \zeta^{1} \right) (\pi \cdot D\varphi) \right) d^{1}x_{0}$$

where $\pi^2:=g^{AB}\pi_A\pi_B$ and $\pi\cdot D\varphi:=\pi_A D\varphi^A$, etc.

• 1+1 split the metric h à la ADM as (with $\gamma = h_{11}$):

$$\begin{pmatrix} h^{00} & h^{01} \\ h^{10} & h^{11} \end{pmatrix} = \begin{pmatrix} -1/N^2 & M/N^2 \\ M/N^2 & \gamma^{-1} - M^2/N^2 \end{pmatrix}.$$

Furthermore, the metric volume $\sqrt{-h}$ decomposes as

$$\sqrt{-h} = N\sqrt{\gamma}$$

• Then the Hamiltonian reduces to:

$$egin{aligned} H_{ au,\zeta}(arphi,h,\pi,arpi) &= \ &\int_{\Sigma_{\pi}} \left(rac{1}{2\sqrt{\gamma}} \zeta^0 N(\pi^2 + Darphi^2) + (\zeta^0 M + \zeta^1)(\pi \cdot Darphi)
ight) d^1 x_0. \end{aligned}$$

• Note the combinations $\zeta^0 N/\sqrt{\gamma}$ and $\zeta^0 M + \zeta^1$ of kinematic fields (components of h) which appear linearly in this expression; these are atlas fields.

- Note the combinations $\zeta^0 N/\sqrt{\gamma}$ and $\zeta^0 M + \zeta^1$ of kinematic fields (components of h) which appear linearly in this expression; these are atlas fields.
- Also note the factors $(\pi^2 + D\varphi^2)$ and $\pi \cdot D\varphi$; these are the string superhamiltonian and supermomentum, resp.

- Note the combinations $\zeta^0 N/\sqrt{\gamma}$ and $\zeta^0 M + \zeta^1$ of kinematic fields (components of h) which appear linearly in this expression; these are atlas fields.
- Also note the factors $(\pi^2 + D\varphi^2)$ and $\pi \cdot D\varphi$; these are the string superhamiltonian and supermomentum, resp.
- We have an induced presymplectic structure on \mathcal{P}_{τ} pulled back from $T^*\mathcal{Y}_{\tau}$. It is:

$$\omega_{\tau}(\varphi,h,\pi,\varpi) = \int_{\Sigma_{\tau}} (d\varphi^{A} \wedge d\pi_{A}) \otimes d^{2}x_{0}.$$

Initial Value Analysis

We will explore this by means of the bosonic string example.

We must solve Hamilton's equations

$$X_{\tau} \perp \omega_{\tau} = dH_{\tau,\zeta}$$
 (3)

for the evolution vector field X_{τ} on \mathcal{P}_{τ} .

Initial Value Analysis

We will explore this by means of the bosonic string example.

We must solve Hamilton's equations

$$X_{\tau} \perp \omega_{\tau} = dH_{\tau,\zeta}$$
 (3)

for the evolution vector field X_{τ} on \mathcal{P}_{τ} .

• This is not guaranteed, as ω_{τ} is merely presymplectic; $dH_{\tau,\zeta}$ may not be in the range of the flat map.

Write

$$m{X}_{ au} = \left(rac{m{d}arphi^{m{A}}}{m{d}\lambda}
ight)rac{\delta}{\deltaarphi^{m{A}}} + \left(rac{m{d}\pi_{m{A}}}{m{d}\lambda}
ight)rac{\delta}{\delta\pi_{m{A}}} + \left(rac{m{d}m{h}_{\sigma
ho}}{m{d}\lambda}
ight)rac{\delta}{\deltam{h}_{\sigma
ho}},$$

Then

$$X_{\tau} \perp \omega_{\tau} = \int_{\Sigma_{\tau}} \left[-\left(\frac{d\varphi^{A}}{d\lambda}\right) d\pi_{A} + \left(\frac{d\pi_{A}}{d\lambda}\right) d\phi^{A} \right] \otimes d^{1}x_{0}$$
 (4)

Note there are no terms involving differentials of the metric.

• On the other hand, after several integrations by parts,

$$dH_{\tau,\zeta} = \int_{\Sigma_{\tau}} \left[\frac{\zeta^{0} N}{\sqrt{\gamma}} \pi \cdot d\pi - D \left(\frac{\zeta^{0} N}{\sqrt{\gamma}} \varphi \right) \cdot d\varphi \right]$$

$$+ (\zeta^{0} M + \zeta^{1}) d\pi \cdot D\varphi - D \left((\zeta^{0} M + \zeta^{1}) \pi \right) \cdot d\varphi$$

$$+ \frac{1}{2} \zeta^{0} (\pi^{2} + D\varphi^{2}) d \left(\frac{N}{\sqrt{\gamma}} \right)$$

$$+ \zeta^{0} (\pi \cdot D\varphi) dM \otimes d^{1} x_{0}$$
(5)

• Comparing (4) with (5), we can solve for X_{τ} provided

$$\pi^2 + D\varphi^2 = 0$$
 and $\pi \cdot D\varphi = 0$

These are the superhamiltonian and supermomentum initial value constraints. They define the secondary constraint set $\mathcal{P}_2 \subset \mathcal{P}$.

• Comparing (4) with (5), we can solve for X_{τ} provided

$$\pi^2 + D\varphi^2 = 0$$
 and $\pi \cdot D\varphi = 0$

These are the superhamiltonian and supermomentum initial value constraints. They define the secondary constraint set $\mathcal{P}_2 \subset \mathcal{P}$.

• So we have on \mathcal{P}_2

$$\frac{d\varphi^{A}}{d\lambda} = \frac{\zeta^{0}N}{\sqrt{\gamma}}g^{AB}\pi_{B} + (\zeta^{0}M + \zeta^{1})D\varphi^{A}$$

$$rac{d\pi_{A}}{d\lambda} = g_{AB}D\left(rac{\zeta^{0}N}{\sqrt{\gamma}}D\varphi^{B}
ight) + D\left((\zeta^{0}M + \zeta^{1})\pi_{A}
ight)$$

• $dh_{\sigma\rho}/d\lambda$ undetermined; $h_{\sigma\rho}$ are kinematic fields

- $dh_{\sigma\rho}/d\lambda$ undetermined; $h_{\sigma\rho}$ are kinematic fields
- One checks that X_{τ} is tangent to \mathcal{P}_2 , so there are no further constraints.

- $dh_{\sigma\rho}/d\lambda$ undetermined; $h_{\sigma\rho}$ are kinematic fields
- One checks that X_{τ} is tangent to \mathcal{P}_2 , so there are no further constraints.
- On the instantaneous level, the gauge transformations are generated by the Hamiltonian vector fields

$$X_{K\mathfrak{H}} = \frac{K}{\sqrt{\gamma}} g^{AB} \pi_{B} \frac{\delta}{\delta \varphi^{A}} + g_{AB} D \left(\frac{K}{\sqrt{\gamma}} D \varphi^{B} \right) \frac{\delta}{\delta \pi_{A}}$$

$$X_{L\mathfrak{J}} = L D \varphi^{A} \frac{\delta}{\delta \varphi^{A}} + D (L \pi_{A}) \frac{\delta}{\delta \pi_{A}}$$
(6)

of $K\mathfrak{H}$ and $L\mathfrak{J}$ restricted $\mathcal{P}^2_{\lambda,\zeta}$, respectively, together with the $\delta/\delta h_{\sigma\rho}$

• The evolution is totally gauge.

- The evolution is totally gauge.
- The effect of making a gauge transformation is to change the slicing.

- The evolution is totally gauge.
- The effect of making a gauge transformation is to change the slicing.

$$\bullet \ H_{\tau,\zeta} \,|\, \mathcal{P}_2 = 0$$

The Energy-Momentum Map

• Suppose a group $\mathcal G$ acts on $K \to X$ by bundle automorphisms. Then $\eta \in \mathcal G$ acts on sections σ by

$$\eta_{\mathcal{K}}(\sigma) = \eta_{\mathcal{K}} \circ \sigma \circ \eta_{\mathcal{X}}^{-1}$$

The Energy-Momentum Map

 Suppose a group G acts on K → X by bundle automorphisms. Then η ∈ G acts on sections σ by

$$\eta_{\mathcal{K}}(\sigma) = \eta_{\mathcal{K}} \circ \sigma \circ \eta_{\mathcal{X}}^{-1}$$

The corresponding infinitesimal generator is

$$\xi_{\mathcal{K}}(\sigma) = -\mathbb{L}_{\xi}\sigma$$

.

The Energy-Momentum Map

 Suppose a group G acts on K → X by bundle automorphisms. Then η ∈ G acts on sections σ by

$$\eta_{\mathcal{K}}(\sigma) = \eta_{\mathcal{K}} \circ \sigma \circ \eta_{\mathcal{X}}^{-1}$$

The corresponding infinitesimal generator is

$$\xi_{\mathcal{K}}(\sigma) = -\mathbb{L}_{\xi}\sigma$$

• CAVEAT: In general, \mathcal{G} will not act on K_{τ} and \mathcal{K}_{τ} if \mathcal{G} acts nontrivially on X.

This is where our "troubles" begin.

• Let \mathcal{G} act on Z by special covariant canonical transformations with multimomentum map J. Even though \mathcal{G} may not act on \mathcal{Z}_{τ} , we may still define the energy-momentum map

$$E_{ au}:\mathcal{Z}_{ au}
ightarrow\mathfrak{g}^*$$

by

$$\langle E_{\tau}(\sigma), \xi \rangle = \int_{\Sigma_{\tau}} \sigma^* J(\xi)$$
 (7)

• Let $\mathcal G$ act on Z by special covariant canonical transformations with multimomentum map J. Even though $\mathcal G$ may not act on $\mathcal Z_\tau$, we may still define the energy-momentum map

$$E_{ au}:\mathcal{Z}_{ au}
ightarrow\mathfrak{g}^*$$

by

$$\langle E_{\tau}(\sigma), \xi \rangle = \int_{\Sigma_{\tau}} \sigma^* J(\xi)$$
 (7)

 If G stabilizes Σ_τ, then E_τ will be a genuine momentum map. • Let \mathcal{G} act on Z by special covariant canonical transformations with multimomentum map J. Even though \mathcal{G} may not act on \mathcal{Z}_{τ} , we may still define the energy-momentum map

$$E_{ au}:\mathcal{Z}_{ au}
ightarrow\mathfrak{g}^*$$

by

$$\langle E_{\tau}(\sigma), \xi \rangle = \int_{\Sigma_{\tau}} \sigma^* J(\xi)$$
 (7)

 If G stabilizes Σ_τ, then E_τ will be a genuine momentum map.

Thm

 E_{τ} drops to the instantaneous energy-momentum map $\mathcal{E}_{\tau}:\mathcal{P}_{\tau}\to\mathfrak{a}^*.$

Thm

Let $\xi \in \mathfrak{g}$. If ξ_X is everywhere transverse to Σ_{τ} , then

$$\langle \mathcal{E}_{ au}(arphi,\pi), \xi \rangle = -\mathcal{H}_{ au,\xi}(arphi,\pi)$$

Thm

Let $\xi \in \mathfrak{g}$. If ξ_X is everywhere transverse to Σ_{τ} , then

$$\langle \mathcal{E}_{ au}(arphi,\pi), \xi
angle = -\mathcal{H}_{ au,\xi}(arphi,\pi)$$

ullet But $\mathcal{E}_{ au}$ makes sense regardless of transversality

Bosonic String

Bosonic String

$$\begin{split} &\langle \mathcal{E}_{\tau}(\varphi,h,\pi),(\xi,\lambda)\rangle \\ &= -\int_{\Sigma_{\tau}} \left(\frac{1}{2\sqrt{\gamma}} \xi^{0} \textit{N}(\pi^{2} + \textit{D}\varphi^{2}) + (\xi^{0}\textit{M} + \xi^{1})(\pi \cdot \textit{D}\varphi)\right) \textit{d}^{1}\textit{x}_{0}. \end{split}$$

• From this one can read off the string superhamiltonian

$$\mathfrak{H}=\frac{1}{2}(\pi^2+D\varphi^2)$$

and the string supermomentum

$$\mathfrak{J} = \pi \cdot \mathbf{D}\varphi.$$

• Thus as claimed in the Introduction $\mathcal{E} = -(\mathfrak{H}, \mathfrak{J})$, that is, the superhamiltonian and supermomentum are the components of the instantaneous *energy-momentum* map.

- Thus as claimed in the Introduction $\mathcal{E} = -(\mathfrak{H}, \mathfrak{J})$, that is, the superhamiltonian and supermomentum are the components of the instantaneous *energy-momentum* map.
- The supermomentum by itself is a component of the *momentum* map \mathcal{J}_{τ} for the stabilizer group \mathcal{G}_{τ} of Σ_{τ} which does act in the instantaneous formalism, unlike \mathcal{G} .