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Overview:

Now I use space + time decompositions to reformulate CFTs as
infinite-dimensional dynamical systems.

Once a slicing by
Cauchy surfaces is specified,

I’ll recover instantaneous Lagrangian & Hamiltonian
mechanics on appropriate spaces of fields

discuss the standard initial value analysis

define the energy-momentum mapping
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Cauchy Surfaces & Spaces of Fields

Let Σ be a closed n-manifold, and Emb(Σ,X ) the
space of all embeddings Σ→ X . For τ ∈ Emb(Σ,X ),
view Στ := τ(Σ) as a Cauchy surface.

If K → X is a bundle, let Kτ be the restriction of K to
Στ ⊂ X . Let Kτ = Γ(Kτ → Στ ).

the instantaneous configuration space at “time” τ is
Yτ
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The Tangent Space

The tangent space to Kτ at σ is

TσKτ =
{

W : Στ → VK
∣∣ W covers σ

}
,

where VK denotes the vertical tangent bundle of K .
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The Cotangent Space

The smooth (or L2) cotangent space to Kτ at σ is

T ∗σKτ =
{
π : Στ → L(VK ,ΛnΣτ )

∣∣ π covers σ
}
,

where L(VK ,ΛnΣτ ) is the vector bundle over K whose fiber
at k ∈ Kx is the set of linear maps from VkK to Λn

x Στ .

The pairing of T ∗σKτ with TσKτ is given by integration:

〈π,V 〉 =

∫
Στ

π(V ).

In adapted coordinates (Στ is locally x0 = 0), π ∈ T ∗σKτ is

π = πA dkA ⊗ d nx0
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Canonical Forms

The Liouville form on the τ -phase space T ∗Yτ is given in
the ‘usual’ manner:

θτ (ϕ, π)(V ) =

∫
Στ

π(TπYτ ,T∗Yτ · V )

for (ϕ, π) ∈ T ∗Yτ .

The τ -symplectic form is then ωτ = −dθτ .

In adapted coordinates,

ωτ (ϕ, π) =

∫
Στ

(dϕA ∧ dπA)⊗ d nx0.
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Multisymplectic→ Instantaneous Phase Spaces

Consider the vector bundle map

Rτ : Zτ → T ∗Yτ

over Yτ given by

〈Rτ (σ),V 〉 =

∫
Στ

ϕ∗(V σ),

where ϕ = πYZ ◦ σ. Locally,

Rτ (σ) =

∫
Στ

σA
0 dyA ⊗ dnx0 (1)
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Rτ is a submersion with kernel{
σA

idyA ∧ d nxi + (p ◦ σ) d n+1x
}
.

so therefore

ker TRτ (σ) =

{
δ

δpA
i ,
δ

δp

}
(2)

So we recover the instantaneous phase space from the
covariant one. What about the canonical forms?
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On Zτ there is the canonical 1-form:

Θτ (σ)(V ) =

∫
Στ

σ∗(iV Θ),

where σ ∈ Zτ , V ∈ TσZτ , and Θ is the canonical
(n + 1)-form on Z . The canonical two-form Ωτ on Zτ is
Ωτ = −dΘτ .

Proposition

Ωτ (σ)(V ,W ) =

∫
Στ

σ∗(iW iV Ω)
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Ωτ is closed, but not symplectic:

ker Ωτ (σ) =

{
δ

δpA
i ,
δ

δp

}
Comparing with (2), we conclude

Proposition

(T ∗Yτ , ωτ ) is the reduction of (Zτ ,Ωτ ) by ker Ωτ

So the instantaneous framework is obtained from the
covariant formalism via symplectic reduction.

From (1) the instantaneous momenta are just πA = pA
0.
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Instantaneous Dynamics

To discuss how fields evolve, we must define a global notion of
“time." This is accomplished by introducing “slicings" of
spacetime and the relevant bundles over it.

A slicing of an (n + 1)-dimensional spacetime X consists of
a reference n-dimensional Cauchy surface Σ and a
diffeomorphism

sX : Σ× R→ X .

The generator of sX is the vector field

ζX = T sX ·
∂

∂λ
.

We similarly slice bundles over X .
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sX

Σ Σ × R

Σ × {λ} 

  

Σλ

X

Figure: A slicing of spacetime

By general covariance, slicings (≈ coordinates) have no
physical significance. So the flow of ζ must consist of gauge
transformations: ζ ∈ g.



Jet Decomposition Map

We now do “covariant→ instantaneous” on the Lagrangian
side: space + time split the jet bundle using a slicing.

Let ζ := ζY be the generator of the slicing on Y ; φ a section of
Y → X . Set

ϕ := φ
∣∣Στ and ϕ̇ := Lζφ

∣∣Στ

(Recall: Lζφ := Tφ · ζX − ζ ◦ φ.)

Proposition

The jet decomposition map (JY )τ → J(Yτ )× VYτ given by

jφ(x) 7→ (jϕ(x), ϕ̇(x))

is an isomorphism.
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Locally this splitting amounts to

(x i , yA, vA
µ) 7→ (x i , yA, vA

j , ẏA)

where
ẏA = ζµvA

µ − ζA

which reduces to ẏA = vA
0 in adapted coordinates.

Corollary
The jet decomposition map induces an isomorphism

( jY)τ ≈ TYτ

where ( jY)τ is the collection of restrictions of holonomic
sections of JY → X to Στ .
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The Instantaneous Lagrangian

This is
Lτ,ζ(ϕ, ϕ̇) =

∫
Στ

i∗τ (ζX L( jφ)),

for (ϕ, ϕ̇) ∈ TYτ and where iτ is the inclusion Στ → X .

In adapted coordinates

Lτ,ζ(ϕ, ϕ̇) =

∫
Στ

L( jϕ, ϕ̇)ζ0d nx0.

Analysis now proceeds as always.
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The Legendre Transformation

The diagram commutes:

(j1Y)τ
FL−−−−→ Zτ

βζ

y yRτ

TYτ −−−−→
FLτ,ζ

T ∗Yτ

Define the covariant primary constraint set to be

N = FL(JY ) ⊂ Z

and with a slight abuse of notation, set

Nτ = FL(( jY)τ ) ⊂ Zτ .
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Then
Rτ (Nτ ) = Pτ,ζ .

where Pτ,ζ is the instantaneous τ -primary constraint set.

In particular, Pτ,ζ is independent of ζ, and so can be
denoted simply Pτ .

So we equally well arrive at the cusp of the Hamiltonian
formalism covariantly or instantaneously.
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Hamiltonian Dynamics

As always, the instantaneous Hamiltonian is given by

Hτ,ζ(ϕ, π) = 〈π, ϕ̇〉 − Lτ,ζ(ϕ, ϕ̇)

and is defined only on Pτ .

Thm
Let (ϕ, π) ∈ Pτ . Then for any holonomic lift σ of (ϕ, π) to Zτ ,

Hτ,ζ(ϕ, π) = −
∫

Στ

σ∗(ζZ Θ).

Note the crucial role played by the slicing generator ζ.

Observe also that Hτ,ζ is linear in ζ!
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Bosonic String:

Consider a slicing with (gauge) generator

ζ = ζµ
∂

∂xµ
−
(

(hσαζα,ρ + hραζα,σ) + 2λhσρ
) ∂

∂hσρ

The instantaneous Lagrangian is

Lτ,ζ(ϕ,h, ϕ̇, ḣ) =

− 1
2

∫
Στ

√
−h gAB

(
1
ζ0 h00(ϕ̇A − ζ1DϕA)(ϕ̇B − ζ1DϕB)

+ 2h01(ϕ̇A − ζ1DϕA)DϕB

+ ζ0h11DϕADϕB
)

d 1x0, where DϕA := ϕA
,1.
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The instantaneous momenta are

πA = −
√
−h gAB

(
1
ζ0 h00(ϕ̇B − ζ1DϕB) + h01DϕB

)
$σρ = 0.

Thus the primary constraint set is

Pτ =
{

(ϕ,h, π,$) ∈ T ∗Yτ
∣∣ $σρ = 0

}
.

The Hamiltonian is

Hτ,ζ(ϕ,h, π,$) =

−
∫

Στ

(
1

2h00
√
−h

ζ0(π2 + Dϕ2) +

(
h01

h00 ζ
0 − ζ1

)
(π · Dϕ)

)
d 1x0

where π2 := gABπAπB and π · Dϕ := πADϕA, etc.
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1+1 split the metric h à la ADM as (with γ = h11): h00 h01

h10 h11

 =

 −1/N2 M/N2

M/N2 γ−1 −M2/N2

 .

Furthermore, the metric volume
√
−h decomposes as

√
−h = N

√
γ

Then the Hamiltonian reduces to:

Hτ,ζ(ϕ,h, π,$) =∫
Στ

(
1

2
√
γ
ζ0N(π2 + Dϕ2) + (ζ0M + ζ1)(π · Dϕ)

)
d 1x0.



Note the combinations ζ0N/
√
γ and ζ0M + ζ1 of kinematic

fields (components of h) which appear linearly in this
expression; these are atlas fields.

Also note the factors (π2 + Dϕ2) and π · Dϕ; these are the
string superhamiltonian and supermomentum, resp.

We have an induced presymplectic structure on Pτ pulled
back from T ∗Yτ . It is:

ωτ (ϕ,h, π,$) =

∫
Στ

(dϕA ∧ dπA)⊗ d 2x0.
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Initial Value Analysis

We will explore this by means of the bosonic string example.

We must solve Hamilton’s equations

Xτ ωτ = dHτ,ζ (3)

for the evolution vector field Xτ on Pτ .

This is not guaranteed, as ωτ is merely presymplectic;
dHτ,ζ may not be in the range of the flat map.
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Write

Xτ =

(
dϕA

dλ

)
δ

δϕA +

(
dπA

dλ

)
δ

δπA
+

(
dhσρ
dλ

)
δ

δhσρ
,

Then

Xτ ωτ =

∫
Στ

[
−
(

dϕA

dλ

)
dπA +

(
dπA

dλ

)
dφA

]
⊗ d1x0 (4)

Note there are no terms involving differentials of the metric.



On the other hand, after several integrations by parts,

dHτ,ζ =

∫
Στ

[
ζ0N√
γ
π · dπ − D

(
ζ0N√
γ
ϕ

)
· dϕ

+(ζ0M + ζ1)dπ · Dϕ− D
(

(ζ0M + ζ1)π
)
· dϕ)

+
1
2
ζ0(π2 + Dϕ2)]d

(
N√
γ

)

+ ζ0(π · Dϕ)dM
]
⊗ d1x0 (5)



Comparing (4) with (5), we can solve for Xτ provided

π2 + Dϕ2 = 0 and π · Dϕ = 0

These are the superhamiltonian and supermomentum
initial value constraints. They define the secondary
constraint set P2 ⊂ P.

So we have on P2

dϕA

dλ
=
ζ0N√
γ

gABπB + (ζ0M + ζ1)DϕA

dπA

dλ
= gABD

(
ζ0N√
γ

DϕB
)

+ D
(

(ζ0M + ζ1)πA

)
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dhσρ/dλ undetermined; hσρ are kinematic fields

One checks that Xτ is tangent to P2, so there are no
further constraints.

On the instantaneous level, the gauge transformations are
generated by the Hamiltonian vector fields

XKH =
K√
γ

gABπB
δ

δϕA + gABD
(

K√
γ

DϕB
)

δ

δπA

XLJ = LDϕA δ

δϕA + D(LπA)
δ

δπA

(6)

of KH and LJ restricted P2
λ,ζ , respectively, together with the

δ/δhσρ
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The evolution is totally gauge.

The effect of making a gauge transformation is to change
the slicing.

Hτ,ζ | P2 = 0
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The Energy-Momentum Map

Suppose a group G acts on K → X by bundle
automorphisms. Then η ∈ G acts on sections σ by

ηK(σ) = ηK ◦ σ ◦ η−1
X

The corresponding infinitesimal generator is

ξK(σ) = −Lξσ

.
CAVEAT: In general, G will not act on Kτ and Kτ if G acts
nontrivially on X .

This is where our “troubles” begin.
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Let G act on Z by special covariant canonical
transformations with multimomentum map J. Even though
G may not act on Zτ , we may still define the
energy-momentum map

Eτ : Zτ → g∗

by

〈Eτ (σ), ξ〉 =

∫
Στ

σ∗J(ξ) (7)

If G stabilizes Στ , then Eτ will be a genuine momentum
map.

Thm
Eτ drops to the instantaneous energy-momentum map
Eτ : Pτ → g∗.
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Thm
Let ξ ∈ g. If ξX is everywhere transverse to Στ , then

〈Eτ (ϕ, π), ξ〉 = −Hτ,ξ(ϕ, π)

But Eτ makes sense regardless of transversality
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Bosonic String

〈Eτ (ϕ,h, π), (ξ, λ)〉

=−
∫

Στ

(
1

2
√
γ
ξ0N(π2 + Dϕ2) + (ξ0M + ξ1)(π · Dϕ)

)
d 1x0.

From this one can read off the string superhamiltonian

H =
1
2

(π2 + Dϕ2)

and the string supermomentum

J = π · Dϕ.



Bosonic String

〈Eτ (ϕ,h, π), (ξ, λ)〉

=−
∫

Στ

(
1

2
√
γ
ξ0N(π2 + Dϕ2) + (ξ0M + ξ1)(π · Dϕ)

)
d 1x0.

From this one can read off the string superhamiltonian

H =
1
2

(π2 + Dϕ2)

and the string supermomentum

J = π · Dϕ.



Thus as claimed in the Introduction E = −(H, J), that is,
the superhamiltonian and supermomentum are the
components of the instantaneous energy-momentum map.

The supermomentum by itself is a component of the
momentum map Jτ for the stabilizer group Gτ of Στ which
does act in the instantaneous formalism, unlike G.
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