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NONEXISTENCE OF FINITE-DIMENSIONAL QUANTIZATIONS
OF A NONCOMPACT SYMPLECTIC MANIFOLD

MARK J. GOTAY AND HENDRIK B. GRUNDLING

Abstract. We prove that there is no faithful representation by skew-hermi-
tian matrices of a “basic algebra of observables” b on a noncompact symplectic
manifold M . Consequently there exists no finite-dimensional quantization of
any Lie subalgebra of the Poisson algebra C∞(M) containing b.

1. Introduction

Let M be a connected noncompact symplectic manifold. On physical grounds
one expects a quantization of M , if it exists, to be infinite-dimensional. This is
what we rigorously prove here, in the framework of the paper [Go1]. Our precise
hypotheses are spelled out below.

A key ingredient in the quantization process is the choice of a basic algebra of
observables in the Poisson algebra C∞(M). This is a Lie subalgebra b of C∞(M)
such that

(B1) b is finitely generated,

(B2) the Hamiltonian vector fields Xf , f ∈ b, are complete,

(B3) b is transitive and separating, and

(B4) b is minimal with respect to these conditions.

A Lie subalgebra b ⊂ C∞(M) is “transitive” if {Xf (m) | f ∈ b} spans TmM at
every point. b is “separating” provided its elements globally separate points of M .
Throughout this paper, we assume that b is finite-dimensional.

Now fix a basic algebra b, and let O be any Lie subalgebra of C∞(M) containing
1 and b. Then by a finite-dimensional quantization of the pair (O, b) we mean a
Lie representation Q of O by skew-hermitian matrices on some Ck such that
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(Q1) Q(1) = I,

(Q2) Q¹b is irreducible, and

(Q3) Q¹b is faithful.

We refer the reader to [Go1] for a detailed discussion of these matters. We
remark that in the infinite-dimensional case there are additional conditions which
must be imposed upon a quantization. We also elaborate briefly on (Q3). Although
faithfulness is not usually assumed in the definition of a quantization, it seems to
us a reasonable requirement in that a classical observable can hardly be regarded
as “basic” in a physical sense if it is in the kernel of a quantization map. In this
case, it cannot be obtained in any classical limit from the quantum theory.

2. The Obstruction

Given the definitions above, we state our main result:

Theorem 1. Let b be a finite-dimensional basic algebra on a noncompact sym-
plectic manifold M . Then b has no faithful representations by skew-hermitian
matrices.

Proof. We argue by contradiction. Suppose there exists such a representation Q
of b on some Ck. As Q(b) consists of skew-hermitian matrices, Q is completely
reducible. Since Q is faithful, one deduces from [Va, Thm. 3.16.3] that b is
reductive, i.e. b = z ⊕ s where z is the center of b and s is semisimple. We
show that z = {0}. Indeed, by the transitivity condition (B3), the elements of z

must be constant but, if these are nonzero, then s alone would serve as a basic
algebra, contradicting the minimality condition (B4). Thus z = {0} and b = s is
semisimple.

Let B be the connected, simply connected Lie group with Lie algebra b. We
claim that B is noncompact. Now the map f 7→ Xf can be thought of as an
action of b on M . By (B2) the vector fields Xf are complete, so by a theorem of
Palais [Va, Thm. 2.16.13] this action of b can be integrated to an action of the
group B on M . Condition (B3) implies that this action is locally transitive and
thus globally transitive as M is connected. Thus the noncompact manifold M is
a homogeneous space for B , and so B must be noncompact as well.

Now consider a unitary representation U of B on Ck. Decompose B into a
product B1 × · · · ×BN of connected simple groups. Then (at least) one of these,
say B1, must be noncompact. But it is well-known that a connected, simple,
noncompact Lie group has no nontrivial finite-dimensional unitary representations
[BR, Thm. 8.1.2]. Thus U(b) = I for all b ∈ B1. Since every representation Q of b

by skew-hermitian matrices is a derived representation of some finite-dimensional
unitary representation U of B, it follows that Q ¹ b1 = 0, and so Q cannot be
faithful. 2
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From this we immediately have

Corollary 2. Let M be a noncompact symplectic manifold, b a finite-dimensional
basic algebra on M , and O any Lie subalgebra of C∞(M) containing 1 and b. Then
there is no finite-dimensional quantization of (O, b).

As the proof above shows, we do not need conditions (Q1) or (Q2) to obtain
this result. Moreover, the subalgebra O is irrelevant since the proof depends only
on the Lie theoretical properties of the basic algebra b and its action on M .

3. Discussion

Corollary 2 is complementary to the recent result of [GGG] which states that
there are no nontrivial quantizations (finite- or infinite-dimensional) of (P (b), b)
on a compact symplectic manifold M , where P (b) is the Poisson algebra of poly-
nomials generated by the basic algebra b. The proof of that result leaned heavily
on the algebraic structure of P (b); indeed, when M is compact, it turns out that
b must be compact semisimple, and such algebras do have faithful representations
by skew-hermitian matrices. Thus in the compact case, the obstruction to the ex-
istence of a quantization is Poisson, rather than Lie theoretical. Combining [GGG]
with Corollary 2, we can now assert, roughly speaking, that no symplectic manifold
with a (finite-dimensional) basic algebra has a finite-dimensional quantization.

Neither Theorem 1 nor Corollary 2 are valid when the representation is infinite-
dimensional. For instance, in [GGra] an explicit quantization of the polynomial
algebra generated by the “‘affine” basic algebra span{pq, q2} on T ∗R+ =

{
(q, p) ∈

R2 | q > 0
}

is constructed on the Hilbert space L2(R+, dq/q). On the other hand,
there do exist obstructions to obtaining infinite-dimensional quantizations of other
noncompact symplectic manifolds, such as R2n [Go2] and T ∗S1 [GGru]. We hope
to determine the circumstances under which such obstructions occur in future
work. This appears to be a difficult problem; still, some results are already known
in this direction [Go1].
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