## Scientific General Events

Andrew Chesher: Instrumental variable models for discrete outcomes

Shinichi Sakata: On Long-Run Covariance Matrix Estimation with the Truncated Flat Kernel

**One Hour Talks**Anton Alekseev, University of Geneva

Title:*The Kashiwara-Vergne conjecture and Drinfeld's associators*Michel Brion, University of Grenoble

Title:*Counting points of homogeneous varieties over finite fields*

Pavel Etingof, MIT

Title:*Parabolic induction and restriction functors for rational Cherednik algebras and their applications*Victor Ginzburg, University of Chicago

Title:*Quantization of del Pezzo surfaces*Iain Gordon, University of Edinburgh

Title:*The Shapiro-Shapiro Conjecture and Calogero-Moser space*Victor Guillemin, MIT

Title:*Asymptotic properties of spectral measures*

J.-S. Huang, Hong Kong University of Science and Technology

Title:*Dirac operators and Lie algebra cohomologies*Anthony Joseph, Weizmann Institute

Title:*The Borcherds Character Formula, the Littelmann Path Model and n homology*Victor Kac, MIT

Title:*Classification of simple linearly compact generalized Jordan superalgebras*

Allen Knutson, UCSD

Title:*The totally nonnegative Grassmannian and juggling patterns*James Lepowsky, Rutgers

Title:*Tensor product theory for vertex operator algebra modules, and applications*Hiraku Nakajima, Kyoto University

Title:*Quiver varieties and double affine Grassmannian*

Andrei Okounkov, Princeton University

Title:*The mystical powers of eta*Dale Peterson, UBC

Title:*The Toda lattice and small quantum cohomology of homogeneous spaces*Konstanze Rietsch, King's College

Title:*A mirror symmetric approach to Kostant's quantum Toda lattice*

Jean-Pierre Serre, College de France

Title:*Lie Groups and Prime Numbers*Birgit Speh, Cornell

Title:*TBA*David Vogan, MIT

Title:*The orbit method for reductive groups*Nolan Wallach, UCSD

Title:*Hidden subgroup problems in quantum computing.***45 Minute Talks**Ivan Losev, Belarusian State University

Title:*Quantized symplectic actions and W-algebras*Alessandra Pantano, University of California at Irvine

Title:*Unitarity of Nonspherical Minimal Principal Series*Nicholas Ressayre, Université Montpellier 2

Title:*Restricting representations to a reductive subgroup.*Alistair Savage, University of Ottawa

Title:*Moduli spaces of sheaves and the boson-fermion correspondence*Wai Ling Yee, University of Windsor

Title:*Kazhdan-Lusztig Polynomials and Signature Computations*Since their inception in 1994, the bi-annual ANTS meetings have become the premier international forum for the dissemination of new research in algorithmic number theory. The aim is to bring together leading experts in the field, as well as young researchers and graduate students for the purpose of exchanging ideas and presenting their work. The conference proceedings will be published in Springer's prestigious

*Lecture Notes in Computer Science*series. Other highlights include the award of the*Selfridge Prize in Computational Number Theory*, sponsored by the*Number Theory Foundation*, to the best contributed paper, as well as a poster session.The Canadian Young Researchers Conference in Mathematics and Statistics (CYRC) is an annual event that provides a unique forum for young mathematicians across Canada to present their research and to collaborate with their peers.

All young academics involved in research in the mathematical sciences are invited to give a scientific talk describing their work and to attend talks on a host of current research topics in mathematics and statistics. Participants will have the opportunity to build and strengthen lasting personal and professional relationships, to develop and improve their communication skills, and to gain valuable experience in the environment of a scientific conference.

All graduate students, senior undergraduate students, and post-doctoral fellows studying mathematics and statistics at a Canadian university are invited to participate in this conference. Students from Canadian PIMS universities will be strongly encouraged to attend and present at this conference.

All participants are encouraged to deliver a thirty-minute presentation describing their research (or a general interest talk related to their research interests). Those interested in presenting will be required to submit an abstract outlining the content of their proposed talk. Since the body of conference participants will have a wide range of research interests and knowledge, all presentations should be aimed at an audience with a broad knowledge base in mathematics and statistics, but must be tailored to those without a depth of knowledge in any particular area of research.

Presentations will be scheduled for Friday evening (May 9), Saturday (May 10), and Sunday (May 11) morning. The presentations will be open, in the sense that anyone interested, such as undergraduate students, faculty members, and visitors, may attend.

Number theory was coined the "Queen of Mathematics" by Gauss. It is one of the oldest branches of mathematics. Over the years, it has extended its roots into a variety of other domains such as probability, combinatorics, analysis, algebra, and geometry. We hope that this one day conference will give a glimpse into the

diverse aspects of modern number theory.Dr. Igor Burstyn.

Occupational Medicine, University of Alberta.

Title: A vignette from occupational epidemiology: Stitching evidence from tattered fabricDr. Mahyar Etminan.

Centre for Clinical Epidemiology & Evaluation, Vancouver.

Title: TBADr. Adrian Levy. Centre for Health Evaluation and Outcome Sciences;

Department of Health Care and Epidemiology, UBC.

Title: TBADr. Bill Leslie.

Department of Internal Medicine, University of Manitoba.

Title: TBADr. Malcolm Maclure.

Pharmaceutical Services Division, BC Ministry of Health.

Title: You randomize. We Analyze.Dr.Ed Mills.

Faculty of Health Sciences, SFU.

Title: TBADr. Carl Phillips.

Department of Public Health Sciences, University of Alberta.

Title: Can quantitative methods help detect and reduce "publication bias in situ"?Dr. Jat Sandhu.

Vancouver Coastal Health.

Title: TBA**The Mahler measure of curves and surfaces**

by Marie José Bertin Université Pierre et Marie Curie (Paris 6), Institut de Mathématiques de JussieuI report on some new examples of explicit logarithmic Mahler measures of multivariate polynomials.

When the polynomial defines a parametrizable curve, its Mahler measure is expressed in terms of Bloch-Wigner dilogarithms of an element of the Bloch group of an imaginary quadratic field ( Thus a link with hyperbolic varieties). When the polynomial defines a singular K3-surface, I give several examples of the Mahler measure expressed in terms of the L-series of the K3-surface for s=3. Dedekind zeta motives for totally real fields by Francis Brown CNRS, Institut de Mathématiques de Jussieu, IHES**On singular Bott-Chern classes**

by José Ignacio Burgos Gil Universidad de BarcelonaThe singular Bott-Chern classes measure the failure of an exact Riemann-Roch theorem for closed immersions at the level of currents. They are the key ingredient in the definition of direct images of hermitian vector bundles under closed immersions and in the proof of the arithmetic Riemann-Roch theorem in Arakelov geometry for closed immersions. There are two definitions of singular Bott-Chern classes. The first due to Bismut, Gillet and Soulé uses the formalism of super connections. The second, due to Zha, is an adaptation of the original definition of Bott-Chern classes by Bott and Chern.In this talk we will give an axiomatic characterization of singular Bott-Chern classes, which is similar to the characterization of Bott-Chern forms, but that depends on the choice of an arbitrary characteristic class. This characterization allow us to give a new definition of singular Bott-Chern forms by means of the deformation to the normal cone technique and to compare the previous definitions of singular Bott-Chern forms. Moreover we will give an explicit computation of the characteristic class associated to Bismut-Gillet-Soulé definition of singular Bott Chern currents.

**Generic p-rank of semi-stable fibration**

by Junmyeong Jang Purdue UniversityIn this presentation, I will be concerned with two pathological phenomenons of positive characteristic, the failure of Miyaoka-yau inequality and the failure of semi-positivity theorem. Szpiro showed that a Frobenius base change of non-isotrivial smooth fibration violates Miyaoka-Yau inequality. For such a fibration, if the p-rank of the generic fiber is maximal, the dimension of the Lie algebra of Picard scheme is stable after the Frobenius base change. Using this fact and a reduction argument we can construct a counter example of Miyaoka-Yau inequality with smooth Picard scheme, which is a counterexample of Parshin's expectation. And we will see for a semi-stable fibration p : X ? C of a proper smooth surface to a proper smooth curve, if the p-rank of the generic fiber is maximal, the semi-positivity theorem holds and if the p-rank of the generic fiber is 0, some Frobenius base change of p violates the semi-positivity theorem. This result may be applied to a problem of the distribution of p-ranks of reductions of a certain non-closed point in the moduli space of curves over Q¯.

**The Abel-Jacobi map on the Einsestein symbol**

by Matthew Kerr Durham UniversityIn this talk we consider two different constructions of motivic cohomology classes on families of toric hypersurfaces and on Kuga varieties. Under certain modularity conditions on the former we say how the constructions "coincide", obtaining a complete explanation of the phenomenon observed by Villegas, Stienstra, and Bertin in the context of Mahler measure. (This is where the AJ computation on the Kuga varieties, done using our formula with J. Lewis and S. Mueller-Stach, will be summarized). We also look at an application of the toric construction in the non-modular case, to limits of normal functions for families of Calabi-Yau 3-folds.

**Moduli of polarized logarithmic Hodge structures and period maps**

by Sampei Usui Osaka University**Height and GIT weight**

by Xiaowei Wang The Chinese University of Hong KongIn this talk, we will establish a new connection between the weight in the geometric invariant theory and the height introduced by Cornalba and Harris CH and Zhang Z. Then I will explains two applications of this connection.

*Talks will be held at CAB 269 (April 12, 14, 15, 16) and ETL E1 008 (April 13). We have booked the computer lab at CAB 341. map*

This workshop will bring together scientists working on mathematical modeling of viral disease with a focus on viral evolution and epidemiology, and with particular application to influenza and HIV.

Please note: People registering after March 25th will not be registered for the dinner on Friday, April 4th. Please inquire at the meeting about the availability of space at the dinner, if you wish to attend.

Waves, Vortices, and Climate Modelling

Welcome to the 2008 Applied Mathematics Graduate Student Conference (AMGSC) webpage. The conference was held on Saturday, January 26 and Sunday, January 27 at Simon Fraser University. Some students gave short presentations based on past course project or current research.

**Speaker**: Derek Bingham

**Title**: Statistical Research in a Collaborative Environment

Modern statistical research is often motivated by applied problems that arise in other areas of science. Finding solutions to these applied problems leads to collaborations between statisticians and subject-specific researchers. Working in such a collaborative environment brings much benefit to both parties, but is not without challenges. This talk will relate some of my experiences working in such an environment, and how one might build successful long-term collaborative relationships.**Title**: Confidence intervals for proportions and quantiles with application to NHANES

**Speaker**: Cindy Feng

It has been noted that the usual confidence interval for proportions does not perform well for large and small values of p. In surveys the issue is complicated by the survey design and issues of whether to use design effects, effective sample size and effective degrees of freedom arise. The question is which of the many possible confidence intervals available should be recommended for the U.S. National Health and Nutrition Examination Surveys (NHANES) end users and what cautions should be given. In addition, the issues may be different if the interval is actually being used in combination with Woodruff’s method to form confidence intervals for small and large quantiles.**Title**: Median Loss Analysis

**Speaker**: Pen Yu

In classical decision theory in statistics, Wald (1950) first introduced the risk function, and used it to evaluate how good the estimators are. Conventionally, the risk is assumed to be finite in most situations. In other words, we cannot handle the problems of heavy-tail distributions like the Cauchy distribution. In this talk, I will introduce the median version of the risk, called the median loss, and compare it with the risk and other domination criteria. Moreover, we will see that the estimator by the median loss approach is more loss robustness than the estimator by the risk, such as the Bayes estimator.**Title**: Statistical Monitoring of Clinical Trials with Multivariate Response or Multiple Arms Using Repeated Confidence Bands

**Speaker**: Lihui Zhao

**Coauthors**:

X. Joan Hu (Simon Fraser University) Stephen W. Lagakos (Harvard University)

Clinical trials with multivariate response or multiple arms have become increasingly common because of their potential efficiency and cost saving. Interim analyses of such studies are often guided by parametric assumptions for the underlying probability models. There are situations where it is not clear at the outset how the responses differ among the treatment groups and what kinds of differences are clinically meaningful. More flexible designs and monitoring procedures are therefore desirable. In this talk, we extend the repeated confidence bands approach (Hu and Lagakos, 1999) to studies with multivariate target function. We use a recent AIDS clinical trial to illustrate how to apply the multivariate repeated confidence bands (MRCB) approach in practice.**Title**: Prior Sensitivity and Cross-Validation using Sequential Monte Carlo

**Speaker**: Luke Bornn

In a Bayesian setting, adequately approximating the model of interest can be computationally expensive in the order of hours or even days. Prior sensitivity and cross-validation are both tasks that involve repeating this approximation repeatedly, potentially hundreds or thousands of times. In this talk I will demonstrate how sequential Monte Carlo methods can make prior sensitivity and cross-validation feasible in situations where the distribution of interest is not available analytically, reducing computational time by an order of magnitude or more in most settings.**Title**: The Publication Process in Statistics

**Speaker**: Paul Gustafson

Peer-reviewed academic journals are central to scientific life. Scientists of all stripes spend substantial proportions of their time reading, writing, and reviewing for journals. Based on my experiences as an author, a reviewer, an associate editor, and an editor, I will make some comments on how academic journals function, and try to offer some advice on navigating the publication process.**Title**: Finding approximate solutions to combinatorial problems with very large datasets using BIRCH

**Speaker**: Justin Harrington

Over time the boundaries between Computer Science and Statistics have blurred, with a number of disciplines (e.g. Machine Learning) being actively researched in both schools. One such technique is called BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) (Zhang et al, 1997), which is a data pre-processing tool used for clustering extremely large datasets with a k-means algorithm. The advantage of this algorithm is that it generates "sufficient statistics" with only one pass of the dataset, and these values can then be used instead of the whole dataset for certain applications.

In this talk we demonstrate this algorithm's application in two fields, namely robust statistics and (if time permits) a new clustering method called Linear Grouping Analysis (Van Aeslt et al, 2006).**Title**: Designs for Computer Experiments

**Speaker**: Chunfang Lin

Latin hypercube designs have been widely adopted in conducting computer experiments. In this talk, we introduce methods for constructing a rich class of Latin hypercube designs with appealing projection and space-filling properties. The class includes many orthogonal Latin hypercube designs that are not available in the literature, as well as nearly-orthogonal Latin hypercubes and two-level orthogonal-array based orthogonal Latin hypercube designs. This is joint work with Randy R. Sitter.