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Main reference

The general area of geophysical fluid mechanics is truly interdisciplinary.
Ideas from statistical physics are now being applied in novel ways to 
inhomogeneous complex systems such as atmospheres and oceans. In
this book, the basic ideas of geophysics, probability theory, information
theory, nonlinear dynamics, and equilibrium statistical mechanics are
introduced and applied to large-time selective decay, the e¬ect of large-
scale forcing, nonlinear stability, fluid flow on a sphere, and Jupiter's
Great Red Spot. The various competing approaches of equilibrium 
statistical mechanics for geophysical flows are systematically compared
and contrasted from the viewpoint of modern applied mathematics.
Novel applications of information theory are utilized to quantify aspects
of predictability in nonlinear dynamical systems with many degrees of
freedom. The book is the first to adopt this approach and it contains
many recent ideas and results. Its audience ranges from graduate students
to researchers in both applied mathematics and the geophysical sciences.
It illustrates the richness of the interplay of mathematical analysis, 
qualitative models, and numerical simulations, which combine in the
emerging area of computational science.

N
onlinear D

ynam
ics and Statistical

T
heories for B

asic G
eophysical Flow

s
M

ajda and W
ang

Designed by Zoe Naylor

Nonlinear Dynamics and

Statistical Theories for

Basic Geophysical Flows
Andrew J. Majda and Xiaoming Wang

Wang, Xiaoming wxm@math.fsu.edu Complete Statistical Mechanics and Emergence of Large Scale Coherent Structure



Complete Statistical Mechanics
Emergence of large scale coherent structure

Liouville property

Approximate PDE by ODE system.

d ~X
dt

= ~F (~X ), ~X ∈ RN , ~F = (F1, · · · ,FN), N � 1, ~X |t=0 = ~X0.

S(t): solution semi-group.
Liouville property

∇~X
~F =

N∑
j=1

∂Fj

∂Xj
= 0.

Example: Hamiltonian system.
Liouville equation and its solution

∂p
∂t

+ ~F · ∇~X p = 0

p(~X , t) = p0
(
S−1(t)(~X )

)
Conservation

d
dt

∫
RN

G(p(~X , t)) = 0
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Maximum entropy principle applied to ODE

Conserved quantities El(~X (t)) = El(~X0), 1 ≤ l ≤ L
Statistical version of the conserved quantities
E l = 〈El〉p ≡

∫
RN El(~X )p(~X ) d ~X , 1 ≤ l ≤ L.

Conservation of the statistical form 〈El〉p(t) = 〈El〉p0 , for all t .
Maximum entropy principle

S(p∗) = max
p∈C

S(p), S(p) = −
∫
RN

p(~X ) ln p(~X ) d ~X ,

C =

{
p(~X ) ≥ 0,

∫
RN

p(~X ) d ~X = 1, 〈El〉p = E l ,1 ≤ l ≤ L
}

Most probable pdf (Gibbs measure)

p∗(~X ) = G~θ(
~X ) = Z−1 exp(−

L∑
l=1

θlEl(~X )), Z =

∫
RN

exp(−
L∑

l=1

θlEl(~X )) d ~X <∞

Gibbs measure is invariant, ~F · ∇~XG~θ = 0.
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Josiah Willard Gibbs

Figure: Josiah Willard Gibbs, 1839-1903
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Remarks on the maximum entropy principle

Entropy is conserved in the deterministic case.

d ~X
dt

= ~F (~X ) + ε
d ~W
dt

Fokker-Planck equation (Kolmogorov, Smoluchowski)

∂p
∂t

+ ~F · ∇~X p − ε2

2
∆~X p = 0

Equation for the density of Shannon entropy Q = −p ln p

∂Q
∂t

+∇~X · (~FQ)− ε2

2
∆~X Q =

ε2

2p
|∇p|2

Monotonicity of Shannon entropy S(p) = −
∫

p ln p (noise
increases uncertainty)

d
dt
S(p(t)) ≥ 0.
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Remarks on the maximum relative entropy principle

Relative entropy is conserved in the deterministic case.

d ~X
dt

= ~F (~X ) + ε
d ~W
dt

Fokker-Planck equation (Kolmogorov, Smoluchowski)

∂p
∂t

+ ~F · ∇~X p − ε2

2
∆~X p = 0

Equation for the density of relative entropy Q = −p ln p
q

∂Q
∂t

+∇~X · (~FQ)− ε2

2
∆~X Q =

ε2

2p
p3

q2 |∇
q
p
|2

Monotonicity of relative entropy S(p,q) = −
∫

p ln p
q

d
dt
S(p(t),q(t)) ≥ 0.

Noise enhances mixing and statistical uniqueness.
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Adriaan Fokker, Max Planck, Andrey Kolmogorov,
Marian Smoluchowski

Figure:
Fokker,
1887-
1972

Figure:
Planck,
1858-
1947

Figure:
Kol-
mogorov,
1903-
1987

Figure:
Smolu-
chowski,
1872-
1917
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Barotropic quasi-geostrophic equation with topography

Barotropic quasi-geostrophic equation

∂q
∂t

+∇⊥ψ · ∇q = 0, q = ∆ψ + h

q: potential vorticity, ψ: stream-function, h: bottom topography,
Ω = (0,2π)× (0,2π), per. b.c.
Conserved quantities: kinetic energy E and total enstrophy E

E = − 1
2|Ω|

∫
Ω

ψ∆ψ dx,

E = − 1
2|Ω|

∫
Ω

q2 dx
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Application to barotropic QG: general strategy

1 Finite dimensional (Galerkin) truncation (approximate PDE by
ODE)

2 Verify (i) the conservation of energy enstrophy and (ii) the
Liouville property

3 Apply equilibrium statistical mechanics theory to the truncated
ODE.

4 Compute the mean state of the Gibbs measure of the truncated
system and study limiting behavior as the ODE converges to
PDE.
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Jule Charney, Robert Kraichnan

Figure: Jule Charney, 1917-1981
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Figure: Robert Kraichnan,
1928-2008

Wang, Xiaoming wxm@math.fsu.edu Complete Statistical Mechanics and Emergence of Large Scale Coherent Structure



Complete Statistical Mechanics
Emergence of large scale coherent structure

Truncated QG

Fourier basis: BΛ =
{

exp
(

i~k · ~x
) ∣∣ 1 ≤ |~k |2 ≤ Λ

}
.

ψΛ ≡
∑

1≤|~k|2≤Λ

ψ̂~k (t)ei~x·~k = −
∑

1≤|~k|2≤Λ

1

|~k |2
ω̂~k (t)ei~x·~k ,

hΛ ≡
∑

1≤|~k|2≤Λ

ĥ~k (t)ei~x·~k ,

ωΛ ≡
∑

1≤|~k|2≤Λ

ω̂~k (t)ei~x·~k =
∑

1≤|~k|2≤Λ

(−|~k |2ψ̂~k (t))ei~x·~k ,

∂ωΛ

∂t
+ PΛ

(
∇⊥ψΛ · ∇(ωΛ + hΛ)

)
d ω̂~k
dt

−
∑

~l + ~m = ~k ,
|~l |2 ≤ Λ, |~m|2 ≤ Λ

~l⊥ · ~m
|~l |2

ω̂~l(ω̂~m + ĥ~m) = 0.

Wang, Xiaoming wxm@math.fsu.edu Complete Statistical Mechanics and Emergence of Large Scale Coherent Structure



Complete Statistical Mechanics
Emergence of large scale coherent structure

Truncated QG

Fourier basis: BΛ =
{

exp
(

i~k · ~x
) ∣∣ 1 ≤ |~k |2 ≤ Λ

}
.

ψΛ ≡
∑

1≤|~k|2≤Λ

ψ̂~k (t)ei~x·~k = −
∑

1≤|~k|2≤Λ

1

|~k |2
ω̂~k (t)ei~x·~k ,

hΛ ≡
∑

1≤|~k|2≤Λ
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Conservation of truncated energy and enstrophy and
Liouville’s property

Truncated energy and enstrophy

EΛ =
1

2|Ω|

∫
|∇⊥ψΛ|2 d~x =

1
2

∑
1≤|~k|2≤Λ

|~k |2|ψ̂~k |
2,

EΛ =
1

2|Ω|

∫
(ωΛ + hΛ)2 d~x =

1
2

∑
1≤|~k|2≤Λ

| − |~k |2ψ̂~k + ĥ~k |
2.

Liouville property (detailed)

Fj(~X ) = Fj(X1, · · · ,Xj−1,Xj+1, · · · ,X2M),

~X ≡ (Re ψ̂~k1
, Im ψ̂~k1

, · · · ,Re ψ̂ ~kM
, Im ψ̂ ~kM

),

S =
{
~k1, · · · , ~kM

}
: defining set of modes such that

~k ∈ S ⇒ −~k /∈ S, S ∪ (−S) = {1 ≤ |~k |2 ≤ Λ}.
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Prediction of the truncated system

Gibbs measure

Gα,µ,Λ = Z−1
α,µ,Λ exp(−α

2

∑
1≤|~k|2≤Λ

| − |~k |2ψ̂~k + ĥ~k |
2)− θ

2

∑
1≤|~k|2≤Λ

|~k |2|ψ̂~k |
2))

= Zα,µ,Λ exp(−α
2

∑
1≤|~k|2≤Λ

|~k |2(|~k |2 + µ)(ψ̂~k − ψ̂~k )2))

= Π2M
j=1G

j
α,µ,Λ(Xj)

α, θ Lagrange multipliers for enstrophy and energy, µ = θ
α .

Mean state and equation

ψ̂~k =
ĥ~k

µ+ |~k |2
, ψΛ(~x , t) =

∑
1≤|~k|2≤Λ

ψ̂~k ei~x·~k

µψΛ −∆ψΛ = hΛ
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Continuum limit

Asymptotic constraints

lim
Λ→∞

〈EΛ〉G = E0, lim
Λ→∞

〈EΛ〉G = E0.

〈EΛ〉G = EΛ + E ′
Λ =

1
2

∑
1≤|~k|2≤Λ

|~k |2|ĥ~k |
2

(µ+ |~k |2)2
+
α−1

2

∑
1≤|~k|2≤Λ

1

µ+ |~k |2

〈EΛ〉G = EΛ + E ′Λ =
1
2

∑
1≤|~k|2≤Λ

µ2|ĥ~k |
2

(µ+ |~k |2)2
+
α−1

2

∑
1≤|~k|2≤Λ

|~k |2

µ+ |~k |2

µΛ → µ∞, αΛ →∞.

∆ψµ∞ + h = µ∞ψµ∞

µ∞ ∈ (−1,∞): E(ψµ∞) = E0.
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Large coherent structure

Understand the
emergence and
persistence of such
large scale coherent
structure
Prediction
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Mathematical model

One layer model (Two dimensional fluid system for potential vorticity)

∂q
∂t

+∇⊥ψ · ∇q = D(−∆)ψ + F ,

q = ∆ψ + βy − Fψ + h

D(−∆)ψ =
∑
j≥1

dj(−∆)jψ

d1: Ekman damping, d2:Newtonian viscosity, dj , j ≥ 3: hyper-viscosity
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Equilibrium/empirical statistical mechanics

Undamped/unforced setting customary
Information theoretical approach: maximize Shannon entropy
with given information
Conserved quantity becomes constraints on ρ
Mean field equation

q̄ = G(ψ̄)

Most of them are stable under appropriate assumptions
Majda and W., Nonlinear Dynamics and Statistical Theories for
Basic Geophysical Flows, CUP, 2006
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Dynamical approach / non-equilibrium

Forcing on the largest scale (Yudovitch, Marchioro,
Constantin-Foias-Temam)
Selective decay (decaying flow) (Foias-Saut, Majda-Shim-W.,
Montgomery, McWilliam etc)
Large scale structure: ground energy shell
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Damped driven environment

unresolved small scale in forcing (small scale convection on
Jupiter weather layer, storms for the oceans’ mixing layer )
random small scale forcing (in Jupiter’s case: predominantly
positive)
Newtonian viscosity needed
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Simple model

Two dimensional Navier-Stokes equation (vorticity-stream function)

∂q
∂t

+∇⊥ψ · ∇q = ν∆q + F ,

∆ψ = q,
q|t=0 = q0(≥ 0)

ψ = q = 0,on ∂Q

Q = [0, π]× [0, π]
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Impulse(kick) random small scale forcing

F =
∞∑
j=1

δ(t−j∆t)Aωr (x−xj)

ωr (x) =

{ (
1− |x− xj |2/r2

)2
, |x− xj |2 ≤ r2 ,

0, |x− xj |2 > r2 .

xj : uniform distribution
on Qr0 =
[r0, π − r0]× [r0, π − r0]
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Prediction via statistical theory (Grote-Majda)

EEST leads to the ground state sin x sin y
PVST or ESTP leads to sinh-Poisson
crude closure (tracking energy and circulation only) works very
well
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Numerical results

Figure: Contour
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Figure: Vorticity
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Numerical results (correlation, Dirichlet quotient,
energy)

Figure: Correlation and D quotient
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Figure: Energy
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Stochastic approach

Decomposition of the kick as mean plus fluctuation

ωr = ω̄r + ω′r , ω̄r = Eωr

cumulative forcing effect (deterministic part)

b t
∆t
cAω̄r

deterministic part remain order one requires

A ≈ ∆t ,or A = cr∆t
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stochastic forcing (fluctuation part)

cumulative forcing effect (fluctuation part)∫ t

0
F ′ = A

ω′r (1) + · · ·+ ω′r (b t
∆t c)√

b 1
∆t c

√
1
∆t

Donsker’s invariance principle∫ t

0
F ′ ≈ A√

∆t
G(t) = cr εG(t)

ε =
√

∆t
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Stochastic continuous version

The continuous equation

∂q
∂t

+∇⊥ψ · ∇q = ν∆q + cr ω̄r + cr ε
dG
dt
,

q = ∆ψ

existence and uniqueness of solutions well known, existence of
invariant measure, random dynamical system, existence of
random attractor well-known (Benssouson-Temam,
Vishik-Fursikov, Schmalfuss, Crauel-Debussche-Flandoli...)
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Heuristic limit

heuristic limit as ε→ 0

∂q0

∂t
+∇⊥ψ0 · ∇q0 = ν∆q0 + cr ω̄r ,

q0 = ∆ψ0

limiting behavior in time for relatively small cr ω̄r

∇⊥ψ0 · ∇q0 = ν∆2ψ0 + cr ω̄r

limiting behavior as cr → 0

q0 ≈ cr

ν
(−∆)−1(ω̄r )

Wang, Xiaoming wxm@math.fsu.edu Complete Statistical Mechanics and Emergence of Large Scale Coherent Structure



Complete Statistical Mechanics
Emergence of large scale coherent structure

Heuristic limit

heuristic limit as ε→ 0

∂q0

∂t
+∇⊥ψ0 · ∇q0 = ν∆q0 + cr ω̄r ,

q0 = ∆ψ0

limiting behavior in time for relatively small cr ω̄r

∇⊥ψ0 · ∇q0 = ν∆2ψ0 + cr ω̄r

limiting behavior as cr → 0

q0 ≈ cr

ν
(−∆)−1(ω̄r )

Wang, Xiaoming wxm@math.fsu.edu Complete Statistical Mechanics and Emergence of Large Scale Coherent Structure



Complete Statistical Mechanics
Emergence of large scale coherent structure

Heuristic limit

heuristic limit as ε→ 0

∂q0

∂t
+∇⊥ψ0 · ∇q0 = ν∆q0 + cr ω̄r ,

q0 = ∆ψ0

limiting behavior in time for relatively small cr ω̄r

∇⊥ψ0 · ∇q0 = ν∆2ψ0 + cr ω̄r

limiting behavior as cr → 0

q0 ≈ cr

ν
(−∆)−1(ω̄r )

Wang, Xiaoming wxm@math.fsu.edu Complete Statistical Mechanics and Emergence of Large Scale Coherent Structure



Complete Statistical Mechanics
Emergence of large scale coherent structure

Heuristic limit

heuristic limit as ε→ 0

∂q0

∂t
+∇⊥ψ0 · ∇q0 = ν∆q0 + cr ω̄r ,

q0 = ∆ψ0

limiting behavior in time for relatively small cr ω̄r

∇⊥ψ0 · ∇q0 = ν∆2ψ0 + cr ω̄r

limiting behavior as cr → 0

q0 ≈ cr

ν
(−∆)−1(ω̄r )

Wang, Xiaoming wxm@math.fsu.edu Complete Statistical Mechanics and Emergence of Large Scale Coherent Structure



Complete Statistical Mechanics
Emergence of large scale coherent structure

Heuristic limit (approximation)

ω̄r ≈ r2

q0 ≈ r2cr

ν
(−∆)−1(1)

(−∆)−1(1) =
∑

kj pos.odd,j=1,2

16

π2k1k2|~k |2
sin(k1x) sin(k2y)

corr(sin x sin y , (−∆)−1(1)) ≈ 0.99
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Pathwise convergence (Majda-W. 2006)

Theorem
‖q − q0‖L∞(0,T ;L2(Ω)) → 0,a.s.

∂q
∂t

+∇⊥ψ · ∇q = ν∆q + cr ω̄r + cr ε
dG
dt

For q̃ = q − cr εG

∂q̃
∂t +∇⊥(ψ̃ + cr ε∆

−1G) · ∇(q̃ + cr εG)

= ν∆q̃ + cr ω̄r + νcr ε∆G

For q′ = q̃ − q0

∂q′

∂t +∇⊥ψ · ∇q′ +∇⊥(ψ′ + cr ε∆
−1G) · ∇q0

= ν∆q′ + νcr ε∆G
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Rate of convergence (Majda-W., 2006)

Theorem
E(‖q − q0‖2

L2) ≤ κε2

q′ = q − q0

dq′ + (−ν∆q′ +∇⊥ψ · ∇q′ +∇ψ′ · ∇q0)dt = cr εdG

Ito’s formula ⇒

d
dt

E(‖q′‖2
L2) ≤ −(2ν − c

ν3 ‖q
0‖8

L2)E(‖q′‖2
L2) + c2

r ε
2
∑

b2
~k

where
G(x, t) =

∑
bkek(x)βk(t)

{ek(x)} o.n.b., {βk(t)} Brownians
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Convergence of attractors (Majda-W., 2006)

Theorem
lim
ε→0

dist(Aε(ω),A0) = 0, a.s.

random dynamical system

ϕ : R+ × Ω× H → H, (t , ω,u) � ϕ(t , ω)u

ϕ(0, ω) = id , ϕ(t + s, ω) = ϕ(t , θsω) ◦ ϕ(s, ω)

(Ω,F ,P, (θt)t∈R),

θt measure preserving, θ0 = id , θt+s = θtθs

random attractor A(ω)(compact, measurable)

ϕ(t , ω)A(ω) = A(θtω)

limt→∞dist(ϕ(t , θ−tω)B,A(ω)) = 0

generalization of Caraballo-Langa-Robinson
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Commutative diagram (Majda-W., 2006)

Theorem

q(t , ω) → q∞(ω)

⇓ ⇓
q0(t) → q0

∞
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Uniqueness of invariant measure

Invariant measure µ0(du)∫
H

F (u)µ0(du) =

∫
H

EF (ϕ(t , ω,u))µ0(du)

Invariant measure is unique for small data
q′ = q2 − q1

d
dt
‖q′‖2 ≤ (−2ν − c

‖∇q1‖2

ν
)‖q′‖2

Main ingredient: contraction, Ito+Burkholder (with mean forcing
and dependent Brownian motion)
E, Eckamnn, Flandoli, Hairer, Kuksin, Mattingly, Maslowski,
Schmalfuss, Sinai, Shirikyan, ...
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E, Eckamnn, Flandoli, Hairer, Kuksin, Mattingly, Maslowski,
Schmalfuss, Sinai, Shirikyan, ...
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Summary

Random small scale bombardments could induce large coherent
structure
Large structures well predicted by equilibrium statistical theory
Random bombardment could alter sign as long as the mean is
not zero
Different large coherent structure could emerge depending on
different distribution of small scale forcing
Generalizes to other geometry and more general one layer
system, or multi-layer system
Long way to go to reach our goal
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Questions

Geophysical effects (β, F , topography, Ekman, · · · )?
What if smallness assumption is violated?
What if the mean of the forcing is zero?
Vanishing viscosity and noise?
Convergence from discrete to the continuous case?
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