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Motivation

Lie Superalgebras

Throughout let k = C. Let g be a Lie superalgebra which is a Z2-graded
vector space

g = g0̄ ⊕ g1̄

with a bracket operation [ , ] : g⊗ g→ g which preserves the Z2-grading
and satisfies graded versions of the usual Lie bracket axioms.

Definition

A finite dimensional Lie superalgebra g is called classical if there is a
connected reductive algebraic group G0̄ such that Lie(G0̄) = g0̄ and an
action of G0̄ on g1̄ which differentiates to the adjoint action of g0̄ on g1̄.
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Motivation

gl(m|n)

Example

The underlying vector space for g = gl(m|n) is the set of
(m + n)× (m + n) matrices over C. We have g0̄

∼= gl(m)⊕ gl(n), where
g0̄ consists of matrices of the form:(

A 0
0 B

)
.

Moreover, g1̄ consists of matrices(
0 C
D 0

)
.

The supercommutator is given by

[Ei ,j ,Ek,l ] = Ei ,jEk,l − (−1)Ēi,j Ēk,l Ek,lEi ,j .
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Motivation

A Natural Self-Injective Category

Consider the category F = F(g,g0̄) of finite-dimensional modules for a
classical Lie superalgebra (i.e., g = gl(m|n)) which are completely
reducible over g0̄ then

• this is a highest weight category (as observed by Brundan),

• there are infinitely many simple modules,

• F is self-injective (i.e., projective is equivalent to injective) [BKN3],

• projective resolutions have infinite length, and the terms can grow in
dimension.

Thus, the cohomology can also grow in dimension so one is motivated to
study these objects with ideas and tools from modular representation
theory.
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Rates of Growth

Complexity

Definition

Let V = {Vt : t ∈ N} = {V•} be a sequence of finite dimensional
C-vector spaces. The rate of growth of V, r(V), is the smallest positive
integer c such that dimk Vt ≤ C · tc−1 for some constant C > 0. If no
such integer exists then V has infinite rate of growth.

Definition

Let M ∈ F and P• � M be a minimal projective resolution for M.
Following Alperin (1977), we define the complexity of M to be
r({Pn : n = 0, 1, 2, . . . }).
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Rates of Growth

Theorem (BKN3)

Let M be an object of F . Then

(i) cF (M) = 0 if and only if M is projective;

(ii) cF (M) ≤ dim g1̄.

Theorem (BKN3)

Let M ∈ F and let P• � M be a minimal projective resolution. Then

cF (M) := r(P•) = r
(

Ext•(g,g0̄)(M,
⊕

SdimP(S))
)

where the sum is over all simple modules S in F , and P(S) is the
projective cover of S.
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Rates of Growth

Complexity for gl(1|1)

Example

Let g = gl(1|1). The simple modules in the principal block are one
dimensional and indexed by L(λ | − λ) where λ ∈ Z. The projective cover
P(λ | − λ) of L(λ | − λ) is four dimensional.

The minimal projective resolution of the trivial module L(0 | 0) is given by

· · · → P(1 | − 1)⊕ P(−1 | 1)→ P(0 | 0)→ L(0 | 0)→ 0.

Therefore, dim Pn = 4(n + 1) and cF (L(0 | 0)) = 2 (rate of growth of the
minimal proj. resolution).

In fact, one can easily show that cF (L(λ | − λ)) = 2 for all λ ∈ Z. The
atypicality of every simple module in the prinicipal block is one and equal
to dim H•(g, g0̄;C).
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Representation Theory of gl(m|n)

Kac and Simple Modules for gl(m|n)

We have a triangular decomposition g = g−1 ⊕ g0 ⊕ g1 with p± = g0 ⊕ g±
(Type I Lie super algebra). Let X + denote the parameterizing set of
highest weights for the simple finite dimensional g0-modules. For λ ∈ X +,
let L0(λ) denote the simple g0-module of highest weight λ. View L0(λ) as
a simple p±–supermodule via inflation. Set

K (λ) = U(g)⊗U(p+) L0(λ) and K−(λ) = HomU(p−) (U(g), L0(λ))

be the Kac module and the dual Kac module, respectively

The simple modules in F are paramertized by X + and can be realized as
the quotients of the Kac modules. The simple modules will be denoted by
L(λ), λ ∈ X +.

Daniel K. Nakano (UGA) Complexity for Lie superalgebras 9 / 35



Support Datum

Support Variety Theories

There are three “support variety” theories which will be relevant for our
work. Each of these satisfies the property of support datum as defined by
Balmer.

• Varieties for g±1

• Duflo-Serganova Varieties

• Varieties arising from H•(g, g0̄,C) ([BKN1], [BKN2])

[Compare with the Chevalley Restriction Theorem for complex semisimple
Lie algebras: N nilpotent cone, S(g∗)G → S(h∗)W ].
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Support Datum

Varieties for g±1

Observe that g±1 is an abelian Lie superalgebra, thus

R = H•(g±1,C) = H•(g±1, {0},C) ∼= S(g∗±1)

Let C be the category of finite dimensional g±1-supermodules. If M ∈ C,
then one can define the g±1 support variety of M. Set

IM = {r ∈ R | r .m = 0 for all m ∈ Ext•F (M,M)}

and then the support variety of M is

Vg±1(M) = MaxSpec (R/IM)
∼= {x ∈ g±1 | M is not projective as a U(〈x〉)-module} ∪ {0}.

Here Vg±1(M) is canonically isomorphic to the “rank variety”, and
Vg±1(M) detects g±1 projectivity.
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Support Datum

Connections with the Complexity over (p±, g0̄)

Theorem (BKN4)

Let g be a Type I classical Lie superalgebra and let M be a module in
F = F(p±,g0). Then

cF (M) = dimVg±1(M) = dimVrankg±1
(M).

Since all modules in F are G0̄-modules there are only finitely many
possibilities for Vg±1(M). Note G0̄ acts on the variety g1 via the adjoint
action (i.e., (A,B) · x = AxB−1 for A ∈ GL(m), B ∈ GL(n), x ∈ g1).
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Support Datum

The orbits are
(g1)r = { x ∈ g1 | rank(x) = r }

for 0 ≤ r ≤ min(m, n). In particular, we have

(g1)r = G0.xr ,

where xr is any fixed matrix of rank r . The closure of (g1)r is

(g1)r = { x ∈ g1 | rank(x) ≤ r };

thus (g1)r ⊂ (g1)s if and only if r ≤ s. Hence, the graph (Hasse diagram)
which describes the partial ordering given by inclusion of orbit closures is a
simple chain.
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Support Datum

Duflo-Serganova Varieties

Consider the subvariety of g1̄ given by

X =
{

x ∈ g1̄ | x2 = [x , x ]/2 = 0
}
.

For M ∈ F , Duflo and Serganova defined the associated variety

XM = {x ∈ X | Ker(x)/ Im(x) 6= 0}
= {x ∈ X | M is not projective as a U(〈x〉)-module} ∪ {0}.

Here x is considered as an operator from M → M by x(m) = x .m with
x2 = 0.
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Support Datum

Varieties arising from the relative cohomology of (g, g0̄)

Let H•(g, g0̄,M) be the relative Lie algebra cohomology of the pair (g, g0̄)
which is obtained from the complex

C • = Homg0̄
(Λ•super (g/g0̄),M).

Theorem (BKN1)

Let (g, g0̄) be as above. Then

Ext•F (C,C) ∼= H•(g, g0̄,C) ∼= (Λ•super (g/g0̄)∗)G0̄ ∼= S•(g∗1̄)G0̄ .

Note that the cohomology ring is finitely generated because G0̄ is
reductive.
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Support Datum

Using the finite generation of cohomology we can define the following
support varieties for modules in F(g,g0̄).

V(g,g0̄)(M) = Maxspec(H•(g, g0̄,C)/Jg(M ⊗M∗)) ⊆ g1̄/G0̄

where Jg(M ⊗M∗) is the annihilator of the cohomology ring H•(g, g0̄,C)
on H•(g, g0̄,M ⊗M∗).

Theorem (BKN2)

Let g = gl(m|n), and L(λ) be a simple module in F(g,g0̄). Then

dimV(g,g0̄)(L(λ)) = atyp(λ).

where atyp(λ), is the maximal number of linearly independent mutually
orthogonal, positive isotropic roots α ∈ ∆+ such that (λ+ ρ, α) = 0.
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Kac Modules

Complexity for Kac (dual Kac) Modules: Principal Block

Theorem (BKN4)

Let K (λ) be a Kac module (resp. K−(λ) be a dual Kac module) in the
principal block B0 of F = F(g,g0) for g = gl(k |k). Then

cF (K (λ)) = cF (K−(λ)) = atyp(λ)2 = k2.
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Kac Modules

cF(K (λ)) = k2

(1) Let
· · · → P2 → P1 → P0 → L0(λ)→ 0

be a minimal projective resolution of L0(λ) in F(p+,g0). Apply the exact
functor U(g)⊗U(p+) − to this resolution to get a projective resolution with
the same rate of growth for K (λ). This shows that

cF(g,g0)
(K (λ)) ≤ cF(p+,g0)

(L0(λ)) ≤ dim g1.

(2) Next observe that any projective resolution in F(g,g0) of a module M
(such as K (λ)) will restrict to a projective resolution of M in F(p+,g0).
Therefore,

cF(p+,g0)
(M) ≤ cF(g,g0)

(M).
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Kac Modules

cF(K (λ)) = k2, con’t

(3) Combining these statement and using support varieties, we have

dimV rank
g1

(K (λ)) = cF(p+,g0)
(K (λ)) ≤ cF(g,g0)

(K (λ)) ≤ k2.

(4) Let Ik be the identity matrix in g1. As a U(〈Ik〉)-module, K (λ)
decomposes as

K (λ)|U(〈Ik 〉)
∼= K (0)⊕

(
U(g)⊗U(p+) N

)
.

Moreover,

K (0)|U(p+)
∼= (1⊗ C)⊕ (U(g−1)g−1 ⊗ C) ∼= C⊕ (U(g−1)g−1 ⊗ C) .

Since Ik ∈ p+, it follows that K (λ) as a U(〈Ik〉)-module has C as a direct
summand, which proves that K (λ) is not free as a U(〈Ik〉)-module.
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Kac Modules

Complexity for Kac (dual Kac) Modules: General Case

Theorem (BKN4)

Let K (λ) be a Kac module (resp. K−(λ) be a dual Kac module) for
gl(m|n) with atyp(λ) = k. Then

(a) cF (K (λ)) = dim (g1)k = (m + n)k − k2;

(b) cF (K−(λ)) = dim (g−1)k = (m + n)k − k2.
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Kac Modules

cF(K (λ)) ≥ dim (g1)k

(1) First note that if B is block of F then all simple modules in B has the
same atypicality. So one can talk about the atypicality of a block.

(2) Gruson and Serganova show that if B is a block of atypicality k then
there is an equivalence of categories with the principal block B0 of gl(k |k).
This equivalence involves translation functors and a restriction functor.
Under this equivalence Kac modules go to Kac modules.

(3) Using the Gruson-Serganova equivalence we show that

Ik ∈ Vg1(K (λ))

where Ik is the “standard” rank k matrix in g1.

(4) Therefore,

dim (g1)k = dim G0̄ · Ik ≤ cF(p+,g0̄)
(K (λ)) ≤ cF(g,g0̄)

(K (λ)).
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Kac Modules

cF(K (λ)) ≤ dim (g1)k

(1) Let M be a gl(m|n)-module which lies in a block of atypicality k. Let
P• → M be a minimal projective resolution for M. Then there is a positive
constant C depending only on m, n and M such that if P(µ) appears as a
direct summand of Pd , then

dim P(µ) ≤ Cd (m+n−k−1)k .

This involves an intricate analysis using Weyl’s dimension formula.

(2) Recall that

cF (K (λ)) = r
(

Ext•(g,g0̄)

(
K (λ),⊕L(µ) dimP(µ)

))
,

where the direct sum is over all simple modules in the block which
contains K (λ).
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Kac Modules

cF(K (λ)) ≤ dim (g1)k , con’t

(3) For fixed d , and set T = ⊕L(µ) dimP(µ)

dim Extd(g,g0̄)(K (λ),T ) =
∑

dim P(µ) · dim Extd(g,g0̄)(K (λ), L(µ)).

If P• → K (λ) is a minimal projective resolution, then

Extd(g,g0̄)(K (λ), L(µ)) = HomF (Pd , L(µ))

being nonzero implies P(µ) is a summand of Pd . By (1)
dim P(µ) ≤ C1d (m+n−k−1)k for some constant C1 which depends only on
m, n, and λ. Thus,

dim Extd(g,g0̄)(K (λ),T ) ≤ C1d (m+n−k−1)k dim Extd(g,g0̄)(K (λ),⊕L(µ)).
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Kac Modules

cF(K (λ)) ≤ dim (g1)k , con’t

(4) Therefore, it suffices to prove

dim Extd(g,g0̄) (K (λ),⊕L(µ)) ≤ C2dk−1,

where C2 is a constant independent of d . If this is true then

dim Extd(g,g0̄)(K (λ),T ) ≤ C1d (m+n−k−1)k dim Extd(g,g0̄)(K (λ),⊕L(µ))

≤ C1d (m+n−k−1)kC2dk−1

= C1C2d (m+n)k−k2−1

= C1C2ddim (g1)k−1.
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Kac Modules

cF(K (λ)) ≤ dim (g1)k , con’t

(5) In order to find the aforementioned bound

dim Extd(g,g0̄) (K (λ),⊕L(µ)) ,

we use the facts that

(i) dim Extd(g,g0̄) (K (λ), L(µ)) is the coefficient of a Kazhdan-Lusztig

polynomial (Brundan), and the coefficients of these polynomials are
uniformly bounded ([BKN4]).

(ii) dim Extd(g,g0̄) (K (λ), L(µ)) 6= 0 implies that µ is a “partition” (after

tensoring by the superdet rep.) between |λ|+ d and |λ|+ d + k2. The
number of partitions with no more that k parts is bounded by C3ik−1

where C3 is a constant only depending on k .
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Simple Modules

Complexity for Simple Modules

Theorem (BKN4)

Let L(λ) be a simple gl(m|n)-module of atypicality k. Then

cF (L(λ)) = dim (g1)k + k = (m + n)k − k2 + k
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Simple Modules

A Reduction Theorem

Theorem

Let L(λ) and L(µ) be two simple modules for gl(m|n) with
atyp(λ) = atyp(µ). Then

L(λ)∗ ⊗ L(λ)⊗ L(µ) ∼= L(µ)⊕ U

for some gl(m|n)-module U. Furthermore, the complexity of L(λ) equals
the complexity of L(µ).

This theorem uses the Generalized Kac-Wakimoto Conjecture for basic
classical Lie superalgebras (as stated by Geer, Kujawa, and
Patureau-Mirand) and the verification of this conjecture for gl(m|n) by
Serganova.
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Simple Modules

cF(L(λ)) ≤ dim (g1)k + k

(1) As in the Kac module case (by using the bound on the dimension of
projectives) we can reduce to showing that

dim Extd(g,g0) (L(λ),⊕L(µ)) ≤ Cd2k−1,

where C is a positive constant.

(2) By applying the previous theorem along with the Gruson-Serganova
equivalence one can reduce this to the case when L(λ) = C and we are in
the principal block B0 for gl(k |k).
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Simple Modules

cF(L(λ)) ≤ dim (g1)k + k , con’t

(3) The category F is a highest weight category with an ”abstract”
Kazhdan-Lusztig theory (terminology of Cline-Parshall-Scott). So

dimExtd(g,g0)(C, L(µ)) =
∑
i+j=d

∑
σ∈B0

dimExtiF (K(σ),C) dimExtjF (K(σ), L(µ))

=
∑
i+j=d

∑
σ∈B0

dimHomg0̄
(L0(σ), S

i (g∗1 )) dimExtjF (K(σ), L(µ))

We can now invoke the fact that the Kazhdan-Lusztig polynomials are
bounded by a constant and the composition factors of S•(g∗1) are
multiplicity free (Schmidt), so dim Homg0̄

(L0(σ), S i (g∗1)) is bounded by
number of partitions of i into at most k-parts.

Daniel K. Nakano (UGA) Complexity for Lie superalgebras 29 / 35



Simple Modules

cF(L(λ)) ≥ dim (g1)k + k

At this time there is no known support theory for F so we need a
replacement to find a lower bound for cF (L(λ)). Let B be a block of
atypicality k. For each d , we look at a specific set of pairs of highest
weights S(d) in a block of atypicality k in gl(m|n).

Lemma

Let B be the block above and let (µ, σ) ∈ S(d) ⊂ B × B. Then, for d
sufficiently large,

dim P(µ) ≥ Cd (m+n−k−1)k ,

where C is a positive constant which is independent of µ and σ.
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Simple Modules

cF(L(λ)) ≥ dim (g1)k + k , con’t

By using the properties of Kazhdan-Lusztig polynomials and Schmidt’s
result we have∑

i+j=d

∑
(µ,σ)∈S(d)

dim ExtiF (K (σ), L(ν)) dim ExtjF (K (σ), L(µ)) ≥ |S(d)|.
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Simple Modules

cF(L(λ)) ≥ dim (g1)k + k , con’t

Set T =
⊕

µ∈B L(µ)dimP(µ)

dim Extd(g,g0)(L(ν),T ) =
∑
i+j=d

∑
µ,σ∈B

dimP(µ) dim ExtiF (K(σ), L(ν)) dim ExtjF (K(σ), L(µ))

≥
∑
i+j=d

∑
(µ,σ)∈S(d)

dimP(µ) dim ExtiF (K(σ), L(ν)) dim ExtjF (K(σ), L(µ))

≥ Cd (m+n−k)k−k |S(d)|

≥ Cd (m+n−k)k−kQ(d).

where Q(d), of degree 2k − 1 with positive leading coefficient, by Erhart’s
theorem on counting lattice points in a polytope.
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Epilogue

A Shadow?

Theorem (BKN4)

Let K±(λ) be a Kac (resp. dual Kac) module for gl(m|n) with
atyp(λ) = k. Then

(a) XK±(λ) = Vg±1(K±(λ)) = (g±1)k ;

(b) cF (K±(λ)) = dimXK±(λ) + dimV(g,g0) (K±(λ)).

Theorem (BKN4)

Let L(λ) be a simple gl(m|n)-module of atypicality k. Then

cF (L(λ)) = dim (g1)k+k = (m+n)k−k2+k = dimXL(λ)+dimV(g,g0̄)(L(λ)).
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Epilogue

Conjecture

Let g = gl(m|n) and M ∈ F(g,g0̄). Then

cF (M) = dimXM + dimV(g,g0̄)(M).

In general does there exist a natural subvariety of g1̄ of dimension equal to
k2 + k for gl(k|k)? [i.e., dimension 2 for gl(1|1), dimension 6 for gl(2|2),
dimension 12 for gl(3|3), etc....]
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Epilogue

Enjoy the conference and your stay in Seattle

Visit ”Coho (the Salmon)” at the Ballard Locks
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