COMMUTATIVE ALGEBRA FOR
MODULAR REPRESENTATIONS OF FINITE GROUPS

SRIKANTH B. IYENGAR

The statements below are all true, I believe. Proving them, or finding counter-
examples if you think they are wrong, is the exercise.

LECTURE I

Let k be a field of characteristic p > 0 and G a finite group.

(1) When G := Z/2 and char k = 2 the trivial representation is not a direct sum-
mand of the regular one.

(2) The group algebra kG is self-injective, and hence that a finitely generated kG-
module is projective if and only if it is injective. (This is true for all kG-modules,
and not only finitely generated ones.)

(3) The group algebra kG is a local ring if and ouly if G is a p-group.

In (4)—(6) assume G is a p-group; even elementary abelian, for simplicity. Set
R :=kG and m := the maximal ideal of R.
Note that m* = 0 for i > 0.
(4) The socle of any non-zero R-module is non-zero.
(5) Any R-module M is part of exact sequences
0— M, — R 5 M—0
0— M- RF— M 1 —0

where v := rank; (M /mM) and p := ranky(socg M), where socg M is the socle
of M. Thus, € @ k and Homp(k, ) are isomorphisms, and so

M; CmR” and socg M = socg(R").

The module M is the first syzygy of M and M_; is its first cosyzygy. The
higher syzygies and cosyzygies are defined iteratively.
(6) Let M be a finitely generated R-module. In (b), the map ¢ is the one above.
(a) If k is not a direct summand of M, then socg M C mM.
(b) If R is not a direct summand of M, then ¢«(M) C mR*, so socR-M = 0.
The next series of exercises deals with the Klein four-group, (Z/2)?2, over a field
of char 2. Thus

R:=k[(Z/2)%] = k[z,3]/(2*,y*) and m:=(z,y).

The aim is to describe the indecomposable R-modules of ranks 1 and 2; compare
this with Questions 3 to 7 in Dave’s lectures.

(7) If M is an indecomposable R-module, and neither R or k, then socg M = mM.
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If M is an indecomposable R-module with ranky M = 2, then it is cyclic and
hence isomorphic to a module of the form

M, := R/(az + by) where (a,b) € k*\ {(0,0)}

One M, & My p if and only if (a,b) = A(da’,b’) for a non-zero A € k. Thus,
the indecomposable modules of rank two are parameterized by Pj.
Suppose M is an indecomposable module or rank 2n+1, for some integer n > 1.
Then its syzygy module M; and its cosyzygy module M _; have odd rank, and
at least one of them has rank strictly less than that of M. It follows that M is
a syzygy or a cosyzygy of k.

Conversely, every syzygy and cosyzygy of k is indecomposable of odd rank;
proving the indecomposability is a bit tricky.



COMMUTATIVE ALGEBRA AND REPRESENTATION THEORY 3

LECTURE II

In this section, k is a commutative ring (nothing much is lost if you wish to
assume k is a field). Our convention is that a graded k-module, say V, will be a
collection {V?};cz of k-modules indexed by Z. The degree of an element v in V
will be denoted |v|. Given a DG (which is an abbreviation of ‘Differential Graded’)
object M, we write M? for the underlying graded object.

(1) Let A, B be graded k-algebras, and A ®; B the graded k-algebra, with

(A®, B)" = @ A" @), BY and multiplication
i+j=n
(a®b) - (a' @V):= (=11’ @ b/

When A and B are (strictly) graded-commutative, so is A ®j B.
When A and B are DG k-algebras, so is A ®; B. And if M and N are DG
modules over A and B, respectively, then M ®; N is a DG A ®; B-module.
(2) The exterior algebra, say A, on indeterminates 1, ...,&, all of odd degrees is
the tensor product A; ® - - - @k A, where A; is the exterior algebra on &;.
This is false without the “signed-multiplication” on the tensor product.
(3) Let r be an element in a commutative ring R and let K be the Koszul complex
on R, viewed as a DG R-algebra. Thus, as a complex of R-modules

K=0—R-5R—0

and the multiplication is the obvious one. The data of a DG K-module structure
on a graded R-module M is equivalent to specifying R-linear maps

d:M —-M and o: M —>M

of degree +1 and —1, respectively, with the property that dooc +ocod =r.
(4) Let A be a DG algebra and o € Al an element satisfying

dla)=0® and a-a=(-1)%-aforallac A
For any DG A-module M, the graded A%-module M? with differential
d(m) :=d™(m)+a-m

is also a DG A-module, denoted M©.

(5) For » = 1 it is easy to check that the morphism e: X — k, defined in the
lecture, is a quasi-isomorphism. The general case can be settled by taking
tensor products.

(6) Let k be a field and R := k[zy,...,2.]/(z{", ..., 2%) where d; > 2 for each i.
For example, R might be the group algebra of an elementary abelian group.
Let K be the Koszul complex on zi,..., z., viewed as a DG algebra. Think
of K as the exterior algebra over R on indeterminates ey, ..., e, of degree —1,

with differential determined by d(e;) = z; and the Leibniz rule.
Claim: H*(K) is an exterior algebra on the k-vector space H !(K).

This can be verified as follows: Let A be an exterior algebra over k on indeter-
minates &1, ..., &, of degree —1, viewed as a DG algebra with zero differential.
There is then a morphism of DG R-algebras

d: A - K with ®(&):= 2% le;.
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This is a quasi-isomorphism: This is easy to check directly for the case r = 1,
and the general case follows by taking tensor products over k.

Note that this argument proves more, namely, that K is quasi-isomorphic,
as a DG algebra to an exterior algebra. This holds true for any complete
intersection local ring R.

Let E = (Z/2)" and let k be a field of characteristic 2. Mimicking the construc-
tion of the functor F' from the lecture, one can get an equivalence of categories

Df(kE) = D (k[z1,...,z,])

where k[z1,...,z,] is a DG algebra with |z;| = 1 and zero differential.
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LECTURE III

Let A be a DG k-algebra, and f: M — N a morphism of DG A-modules. The
cone of f (viewed as a morphism of complexes) has a natural structure of a DG
module over A such that the canonical exact sequence

0— N —cone(f) — XM —0

is compatible with the A-action.

Let A be a ring; it may not be commutative. We say that a complex is perfect
if it is isomorphic (in the derived category) to a bounded complex of finitely
generated projective A-modules, that is to say, to one of the form

0— P — ... — P'—0

with each P™ a finitely generated projective A-module. It is not hard to prove
that a complex is perfect, then it is in thick(A); the converse is also true.

A more precise statement is that a complex M of A-modules is in thick™(A),
for some n > 0, if and only if it is isomorphic in D(A) to a complex P with a
filtration by subcomplexes

{0} C P(0)C P(1)C ---C P(n) = P

such that P(i)/P(i—1) is a graded projective A-module, with zero differential.
This extends verbatim to the case where A is a DG algebra, except that one
has to allow M to be a direct summand of such a P.

Let R = k[z1,...,2.]/(2},...,2P), with k a field. A complex M of R-modules
is in thick(k) if and only if H*(M) has finite length. The same is true over any
(commutative, noetherian) local ring R, and in fact much more generally.

Let E = Z/2 and k a field of characteristic 2. By Exercise 7 in Lecture II (if
you did not do that exercise, this is a good time to do so) there is then an
equivalence of categories

Df(kE) — Df(k[z])

where k[z] is a DG algebra with |z| = 1 and zero differential. Think about
the images under this functor of the indecomposable kE-modules (there are
only two), and also of the Koszul complex on z. What are the kE-modules
corresponding to the DG k[z]-modules k[z]/(z™)?

Let now E = (Z/2)? and k a field of characteristic 2, so kE = k[z1, 23]/ (23, 23).
There is an equivalence of categories

DY (kE) — D" (k[x1, 22])

where k[z1,x2] is a DG algebra with |z;| = 1 and zero differential.
What are the DG k[x1, z3]-modules corresponding to the syzygy modules of
k over kE? It is also worth thinking about the indecomposable modules

Ma, a0y = kl21, 22]/(a121 + a2z2)  for (a1, a2) € K% .

Think about the analogue of Exercises 4 and 5 for elementary abelian p-groups
with p > 3.
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LECTURE 1V
Let k be field and set
R:=k[z1,...,2]/(2¥,...,2P).
Thus, R might be the group algebra of an elementary abelian p-group of rank r.

(1) Let K be the Koszul complex on the elements z1,. .., z.. Then K is evidently
built out of R, in that it is in thick(R); the converse is also true, so thick(K) =
thick(R). One can prove this directly for » = 1 and settle the general case by
taking suitable tensor products.

In fact thick(M) = thick(R) for any perfect complex M with H*(M) # 0; this
is harder to prove, and is a special case of the classification of thick subcategories
of perfect complexes over commutative noetherian rings, due to Mike Hopkins,
and Amnon Neeman.

Henceforth, » = 2 and k is algebraically closed of characteristic p = 2. Thus R
is the group algebra of the Klein four group. For any a = (a1, az), set
R, = kla1z1 + agze] C k[z1,20] = R
Thus, R, is the k-subalgebra of R spanned by the linear form ajz; + agzs.
(2) The rank variety of an R-module M is the subset of A%(k) defined by
Vr(M) :={(a1,a2) | M |g, is not projective}
This a closed subset, in the Zariksi topology, of A%(k). Compute the rank
varieties of the syzygy modules of k over R, and of the indecomposable modules
Mq,,a5) = kl21,22]/(a121 + azz2) for (a1,az) € k2.

(3) As in my lecture, one can associate another variety to M via the equivalence

Df(R) = Df(k[z1, 22]); this is the support variety of M and denoted Vg (M).

Compute the support varieties of the syzygy modules of k over R, and of
the indecomposable modules Mg, 4,) from (2).



COMMUTATIVE ALGEBRA AND REPRESENTATION THEORY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEBRASKA, LINCOLN, NE 68588, U.S.A.



