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Transportation: what are we talking about? Depends on

applications!! static vs dynamic, different scales.

Mathematical models: (at least) 3 distinct lines of research.

e hyperbolic systems of conservation laws (road traffic: LWR,
Rascle...),

e congested networks,

e optimal transport (Monge-Kantorovich),

The two last ones will be of particular interest here.
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Monge-Kantorovich

Monge-Kantorovich I

Optimal transportation, 1, (1 prob. measures on R<, ¢ transp.

cost. Transport s : RY — R? pushing po forward to u;.
(o = w1 with suo(B) := po(s™(B)).
Monge’s problem:
nf{ | ez, s(z))dpo(z) : stpo = pu},
R
relaxation : Monge-Kantorovich
inf{ c(z,y)dy(z,y) : moly = pro, mty = p1}
Rd x R4

~: transport plan.
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Monge-Kantorovich

In the classical Monge-Kantorovich problem, the transportation
cost only depends on the amount of mass sent from sources to
destinations and not on the paths followed by this mass. Thus,
it does not allow for congestion effects. Congestion effect: the

travelling cost of a trip depends on "how crowded" this trip is.

There exist well-known (finite-dimensional) congested networks

models (Wardrop, Beckmann...).

Aim of this talk: optimal transportation model with congestion,
generalization of the finite-dimensional case.
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The classical congested network model

‘The classical congested network model'

G = (N, A) finite oriented and connected graph, P C N x N
(sources/dest.), vs. 4 > 0 mass to be sent from s to d, Cs 4

(nonempty) set of simple paths connecting s to d ((s,d) € P)
and C' their union. Travelling time functions(congestion), for
a€Awr ty(w) (w>0 flow on arc a), t, nonnegative,

nondecreasing.

Cost of a path r € C given the flows (w,)qeca:
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The classical congested network model 6

Unknown: arc flows (wg,)q.c4 and mass travelling on each road

(hy)rec, constraints:

Vs,d — Z hra Wq = Zhrv Wq = 07 hT > 0. (1)

rcCs q raa

Pbm: what is a long-term steady state or equilibrium

flow-configuration?

Wardrop: used paths have to be shortest paths, given the flow

configuration (similar to Nash equilibrium).
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The classical congested network model

Wardrop equilibrium (1952): (wg)aca, (hr)rec satisfying (1)
such that, V(s,d) € P, Vr € Cs 4, if h, > 0, then:

Tw(r) = min{T, ("), " € Cs 4}

Beckman, McGuire, Winsten (1956) noticed that (wg)aeca,
(hr)rec is a Wardrop equilibrium iff it minimizes

C(w) = Z/Owa ta

acA

subject to (1).
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Outline

Outline I

@ Continuous congestion model

@ Existence and characterization of minimizers
@ Back to equilibria
@ Other formulations

® Numerical approximation
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Congestion modelling 9

Congestion modelling I

Basic ideas: path-dependent model, traffic intensity (transport
density), and metric depending on the traffic intensity.

() open bounded convex subset of R?, two probability measures,

po and gy in M2 (Q), of residents and services in the city

transportation plans

(g0, 1) == {y € ML(QAX Q) : moly = po, mfy =m} (2)
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Congestion modelling 10

sets of paths
o C:=Wh([0,1],9Q), viewed as a subset of C°([0, 1], R?),
e C® :={ocecC: o(0) =z o(1) =y} (z, yin Q),

o (o) := [ |6(t)] dt, the length of & € C,

for o € C', o denotes the arclength reparameterization of o
belonging to C', hence |o(t)| =1(0) = I(o) for a.e. t € [0, 1],

C:={oceC : |6|is constant} = {7, o € C},
for @ € ML (0), Q) € /\/li(é) is the push forward of @)

through the map o — o,
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Congestion modelling 11

o for p € C*(Q,R) and o € C,

Lo(o) = / (o (1)) (8)]dt = 1(0) / (3 (1)),

o co(0) :=0(0), e1(0) := o(1), for all o € C°(]0, 1], R?).

Q(po, 1) ={Q € ML(C) : eofQ = po, e14Q = 1}
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Congestion modelling 12

Définition 1 A transportation strategy consists of a pair (v, p)

with v € I(po, p1) and p = (p™Y), ,yecaxn s a Borel family of
probability measures on C' such that p™Y(C*Y) =1 for v-a.e.
(z,y) € Q x Q.

Traffic intensity I, , € M4 (Q): Vo € C°(Q,R)

[e@it @ = [ ([ @) e @

Probability over paths @, , € Mi(C) given by Q) , = p® 7y
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Congestion modelling 13

Setting () = QQ+,p = p ® v, we simply have I, , = 1o where
/ﬁ p(x)diq(r) = /C L,(0)dQ(c), Ve e C'(QR). (4)

Note that
io@® = | 1)
Congestion: metric which depends on the traffic intensity
I — Gy
Lg,, (o)dp™¥(o)
(Gr1,, is a nonnegative function which depends-in a way

specified later on-on the traffic intensity I, ,). Total
transportation cost:

/_ _Cyp(@,y)dy(z,y)

Qx
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Optimal transportation with congestion 14

‘Optimal transportation with congestion'

Optimal transportation problem with traffic congestion:

inf{/_ ey plx,y)dy(x,y) : (v,p) transp. strategy}. (5)

QAxN

Setting () = ), = p ® 7, this can (formally) be rewritten as:

nt { [ Gig@hdiofe) : Q€ Qo) | (6)
where

Q(po, 1) ={Q € ML(C) : eofQ = po, e14Q = 1}

Optimal transportation with congestion/1



Optimal transportation with congestion 15

In problem (6) allows for more general forms of congestion
through ¢ — G; (no need for G; to be l.s.c.). From now on, we
assume that G has the following local form:

di

Gi(x) =g (d—ﬁ(x)> , for i << L2, (7)

with g nondecreasing Ry — R, such that the function H
defined by H(z) = zg(z) for all z € R, is convex and

superlinear (i.e. lim, 1. g(2) = +00).
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Optimal transportation with congestion 16

The optimization problem reads as:

H(i(x))dx if i << L2,
inf  H(ig) where H(i) = Jo H(i(x))dw if i
et +00 otherwise.

(8)

In the sequel, we say that a transportation strategy (v, p) is

optimal if @, , solves (8).

Optimal transportation with congestion/3



Existence of minimizers 17

‘Existence of minimizers'

Assumptions:
e H is convex and nondecreasing on R, with H(0) = 0,

e there exists ¢ > 1, and positive constants a and b such that
az? < H(z) <b(z7+1) for all z € R,

H is differentiable on R, , and there exists a positive
constant ¢ such that 0 < H'(z) < ¢(2971+1), for all z € R,

the following set

Q¥ (po, u1) :=1{Q € Qpo, p1) : g € L} (9)

1s nonempty.
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Existence of minimizers 18

The optimal transportation with congestion problem then reads
as:

QeQI(po,1)

inf /Q Hiio(x))da. (10)

Not easy to check a priori that Q(ug, p1) # 0, but

e it holds whenever p and p; are L? (De Pascale, Pratelli),

e also when Q = [0,1]? and po and p; are respectively the

one-dimensional Hausdorff measures of the vertical sides of

the square.

Existence of minimizers/2



Existence of minimizers 19

Lemma 1 Let (Qn), € ML(C°([0,1],R?))N such that

Qn(C) =1 for all n and there exists a constant M > 0 such
that:

n

sup/Cl(a) dQ, (o) < M.

Then the sequence (@n)n 18 tight and admits a subsequence that

converges weakly * to a probability Q) such that Q(C') = 1.

Existence of minimizers/3



Existence of minimizers 20

Lemma 2 Let (Qy,)n be a sequence in M2 (C) that converges
weakly * to some Q € ML (C). If there exists i € M4 (Q) such

that ig, converges weakly * to i in M () then we have ig < i.

Hence

Theorem 1 The minimization problem (10) admits a solution.

Existence of minimizers/4



Characterization of minimizers 21

‘Characterization of minimizers'

Q € Q9(po, p11) solves (10) if and only if

/ngaz Hlf{/QgZQ : Q < Qq(uojul)} Wlthg: H/(Za) c Lq*,
(1)

What does it mean on (the optimal transport strategies)? If

Q =P ® 7, what can be said on (p,7)? link with classical
Monge-Kantorovich theory?

Characterization of minimizers/1



Characterization of minimizers 22

(Very) Formal manipulations,

(0)dQ(0)

] ( [ L)) dtay
[ ([ o)) arien

inf inf / Lz(o)dp(o) | dv(z,
WEH(MO,M)/ Q <p€M (C=Y) Jow.y 5( Jdp! )> V(@)

inf inf Ly dv(z,
VEH(MO,Ml)/ﬁxﬁ (060909 ()) ’7( y)
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Characterization of minimizers 23

So that firstly:

_ ~ —dO
/ﬁxﬁcg(xvy)d/y(a%y) S/Lg Q

C

= inf /__Cg(x,y)dv(af,y)
Qx0

yEI (o, 1)

so that 7 solves the Monge-Kantorovich problem:

inf cz(x,y)dy(x,y).
7EH(MO,M)/QXﬁ ez, y)dvy(z,y)

Characterization of minimizers/3



Characterization of minimizers 24

Secondly,

and since Lz(o)

Lg(0) = cg(0(0),0(1))  for Q-a.e. o.

or, in an equivalent way, for J-a.e. (x,y) one has:

Lg(o) = cg(x,y)  for p™Y-ae. o

Of course, all this is only formal since € is only L7 .

Aim: make the previous manipulations rigorous.
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Characterization of minimizers 25

For a non-negative continuous £ € C%(Q) we define
ce(z,y) =inf{L¢(0) : 0 € CY .

Proposition 1 Let us assume that ¢ < 2 and define
a:=1—2/q*, then there exists a non-negative constant C' such

that for every & € CY(Q,RT) and every (x1,y1,x2,y2) € Q*, one
has:

ce(1,y1) — ce(wa, y2)| < Cll¢llLax ) (|71 — 22| + [y1 — y2|?) -
(12)
Consequently, if (€,)n € CO(Q, RN is bounded in LY , then
(ce, )n admits a subsequence that converges in C°(2 x Q,R,).
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Characterization of minimizers 26

From, now on, we assume ¢ < 2, and for a non-negative

£ € LT () we define

ce(r,y) = sup{c(z,y) :c€ A(§)},

where

A() = {timee, n €0 ¢ (€)n € CO@), £ 20,6 — € in L7}

Characterization of minimizers/6



Characterization of minimizers 27

As for L¢, we have:
Lemma 3 Let us assume that ¢ < 2. Let QQ € Q% (o, 1), £ be

a non-negative element of LY , and (&n)n be a sequence of

non-negative continuous functions that converges to & in L9 ,
then:

(i) (Lg¢,)n converges strongly in L'(C, Q) to some limit which
is independent of the approximating sequence (&,), and

which will again be denoted L.
(12) The following equality holds:

| e@iio) do= [ Le@) dQ0). (13
Q C
(1i1) The following inequality holds for Q-a.e. o € C':

Le(o) 2 ¢¢(0(0),0(1)). (14)
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Characterization of minimizers 28

Characterization of optimal transport strategies:

Theorem 2 Let us assume that ¢ < 2 and that H s strictly

conver. A transportation strategy (7,Dp) is optimal if and only if,
setting Q := Q=5 and & := H'(ig), one has:

1. 7 solves the Monge-Kantorovich problem:

inf ce(x,y)dvy(x,vy),
'YGH(,U«Oy,Ul)/ﬁxﬁ 5( y) /7( y)

2. for Q-a.e. 0 € C, one has:

Le(o) = 5(0(0), o(1)),

Characterization of minimizers/8



Wardrop-like equilibria 29

‘ Wardrop-like equilibria I

congestion function g : R, — R, continuous increasing and
satisfies az? 1 < g < b(2971 + 1) for all z € R, and some
q € (1,2). Then for any transportation strategy (v, p) such that

I, , € L9, the transportation cost function resulting from the

strategy (v, p) is ¢ for £ :==gol,, € LY.

Définition 2 A transportation strategy (7,p) is an equilibrium

if I3 € LY and, setting £ :== go L= one has
1. Lg(o) = cg(0(0),0(1)) for Qzp-a.e. o € C,

2. ~ solves the Monge-Kantorovich problem:

inf /_ _Ce(z, y)dy(z,y).
QxQ

yEI (o, 1)

Wardrop-like equilibria/1



Wardrop-like equilibria 30

Theorem 3 Under the assumptions of this paragraph, there

exists an equilibrium. Moreover (3,D) is an equilibrium if and

only if Q := ()~ p solves the minimization problem:

inf / H,(ig(x))dx  with Hy(z) ::/ g(s)ds, Vz € Ry.
QREeQ(no,m1) J 0

More general than Wardrop equilibrium (where ~ is fixed).
Easily adapts to the case of a fixed ~, only changes the

constraint on ():

/ f(o Q) = | e y)dy(a,y).

QxQ
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Other formulations 31

Other formulations '

Duality
£:=H' (ig) solves

sup W(E) /Q H* (¢ () da

geLa”, £>g(0)

where H* is the Legendre-Fenchel transform of H and:

inf / Ce(x,y)dy(x,y).

YEII (o, 1) JOX O
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Other formulations 32

Vector-valued measure formulation

For Q € Q%(ug, 41), define the vector measure ;Q by,
VX € CY(Q,R?):

| X@diae /(/ X(o >t)d@<a>,

It is easy to check:

div(iq) = po — p1, and |lig|| < iq.
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Other formulations 33

Suggests to consider

1nf{/ Hp) : div(p) = Mo—ul} (18)

(slight abuse of notations H(p) = H(|p|)), unique minimizer

p = VH* (V1) where w solves the (typically degenerate) elliptic

equation
div(VH*(Vu)) = po — 1.

By monotonicity of H, one has inf(10)> inf(18).
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Other formulations 34

Heuristic construction of an optimizer ): consider (as in Evans
and Gangbo) the ODE

. ) p(X(t,x))
X(t,z) = (1 — t)po(X(t, ) + tpa (X (¢,2))

X(0,z) ==.

and define Q

/ F(0)dQ(o) = / F(X (., 2))dpuo(2)
C

Q

by construction, iz = |p| and then

/Q H (ig(x))dz = inf(18)

so that formally () is optimal. By suitable regularization
inf(10)= inf(18).
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Numerical approximation 35

‘ Numerical approximation I

Start with the dual formulation

inf J(€) = AH*(x,f(x))dx - W(¢)

£EL‘1* ’ 525029(70)

to compute the optimal metric £ = 9;H (x,ig(x)). Case of a
fixed (discrete) transport plan v = ) vagd(s, 75):

W(€) == Yapce(Sa, Tp).

Where c¢ (S, .) is the viscosity solution (or largest W< a.e.

subsolution) of the Eikonal equation
VUl =& UH(S) =0 (19)

(recall ¢* > 2).
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Numerical approximation 36

Space discretization, mesh size h, consistent (Souganidis,
Barles-Souganidis, Rouy-Tourin) discretization of the Eikonal

equation:

<max{<ui,j — U1 ), Uy —Ussr ), 0}>2
e

(max{(ui,j — U 1), Usj —Us 1), 0}>2

— .. 2
hy o (gz,]) .

can be solved efficiently by Sethian’s Fast Marching Method.
Notation : cg(S, T'), discrete functional

JhE) =12 H (4, 5:65) — Y ct(Say T5) Vs,

1,9 r,8

Note that each J" is convex.
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Numerical approximation 37

['-convergence:

Theorem 4 The sequence of functionals J* I'—converges with

respect to the weak LY convergence to the limit functional J.

Moreover, as the sequence (J h) n 18 equi-coercive and every
functional, J included, is strictly convex, (strong) convergence
of the unique minimaizers and of the values of the minima is

guaranteed.
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Numerical approximation 38

Solving the discrete problem by a subgradient descent method,

J" involves a differentiable part and a convex homogenous one.

Problem : compute at each iteration a subgradient of the
second part. Not straightforward but possible recursively by a
method that uses the same recursivity as the FMM.

Several other applications of this strategy to compute by FMM
a subgradient of distances with respect to metrics: inverse
problems in tomography, optimal design of obstacles to prevent

mass transfer (Buttazzo)...
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