Interesting mathematics arises in many areas of the study of sea ice and its role in climate. Partial differential equations, numerical analysis, dynamical systems and bifurcation theory, diffusion processes, percolation theory, homogenization and statistical physics represent a broad range of active fields in applied mathematics and theoretical physics which are relevant to important issues in climate science and the analysis of sea ice in particular. We will explore how these areas of mathematics are being used to advance our understanding of sea ice, and improve projections of climate change.

CONFIRMED SPEAKERS

- Dorian Abbot (University of Chicago, USA)
- Daniel Feltham (University of Reading, UK)
- Daniela Flocco (University of Reading, UK)
- Agnieszka Herman (University of Gdansk, PL)
- Chris Horvat (Harvard University, USA)
- Alison Kohout (National Institute of Water and Atmospheric Research Ltd, NZ)
- Jennifer Lukovich (University of Manitoba, CA)
- Yiping Ma (University of Colorado Boulder, USA)
- Ben Murphy (University of California Irvine, USA)
- Donald Perovich (U.S. Army ERDC Cold Regions Research and Engineering Laboratory, USA)
- Mary Silber (Northwestern University, USA)
- Vernon Squire (University of Otago, NZ)
- Court Strong (University of Utah, USA)
- Ivan Sudakov (University of Dayton, USA)
- Takenobu Toyota (Hokkaido University, JP)
- Martin Vancoppenolle (French National Centre for Scientific Research, FR)
- Renate Wackerbauer (University of Alaska Fairbanks, USA)
- Jérôme Weiss (Institut des Sciences de la Terre, FR)
- Andrew Wells (Oxford University, UK)
- John Wettlaufer (Yale University, USA)

ORGANIZERS
Chair: Kenneth M. Golden (University of Utah, USA), Cecilia Bitz (University of Washington, USA), Ian Eisenman (University of California San Diego, USA), Mike Meylan (University of Newcastle, AU), Grae Worster (University of Cambridge, UK)

www.pims.math.ca/scientific-event/150924-cmsi