Periodic Homogenization For Elliptic Nonlocal Equations
(PIMS Workshop on Analysis of nonlinear PDEs and free boundary problems)

Russell Schwab

University of Texas at Austin

July 23, 2009
The Set-Up

Family of Oscillatory Nonlocal Equations:

\[\begin{aligned}
F(u^\varepsilon, \frac{x}{\varepsilon}) &= 0 \quad \text{in } D \\
u^\varepsilon &= g \quad \text{on } \mathbb{R}^n \setminus D
\end{aligned} \]

Translation Invariant Limit Nonlocal Equations

\[\begin{aligned}
\bar{F}(\bar{u}, x) &= 0 \quad \text{in } D \\
\bar{u} &= g \quad \text{on } \mathbb{R}^n \setminus D.
\end{aligned} \]

GOAL

Prove there is a unique nonlocal operator \(\bar{F} \) so that \(u^\varepsilon \) will be very close to \(\bar{u} \) as \(\varepsilon \to 0 \). (Homogenization takes place.)
The Set-Up

Family of Oscillatory Nonlocal Equations:

\[
\begin{cases}
 F(u^\varepsilon, \frac{x}{\varepsilon}) = 0 & \text{in } D \\
 u^\varepsilon = g & \text{on } \mathbb{R}^n \setminus D
\end{cases}
\]

Translation Invariant Limit Nonlocal Equations

\[
\begin{cases}
 \bar{F}(\bar{u}, x) = 0 & \text{in } D \\
 \bar{u} = g & \text{on } \mathbb{R}^n \setminus D.
\end{cases}
\]

GOAL

Prove there is a unique nonlocal operator \(\bar{F} \) so that \(u^\varepsilon \) will be very close to \(\bar{u} \) as \(\varepsilon \to 0 \). (Homogenization takes place.)
The Set-Up

Family of Oscillatory Nonlocal Equations:

\[
\begin{aligned}
F(u^\varepsilon, \frac{x}{\varepsilon}) &= 0 \quad \text{in } D \\
\varepsilon u^\varepsilon &= g \quad \text{on } \mathbb{R}^n \setminus D
\end{aligned}
\]

\[
F(u, \frac{x}{\varepsilon}) = \\
\inf_{\alpha} \sup_{\beta} \left\{ f_{\alpha\beta}(\frac{x}{\varepsilon}) + \int_{\mathbb{R}^n} (u(x + y) + u(x - y) - 2u(x))K_{\alpha\beta}(\frac{x}{\varepsilon}, y)dy \right\}.
\]

Think of a more familiar **2nd order** equation:

\[
F(D^2 u, \frac{x}{\varepsilon}) = \inf_{\alpha} \sup_{\beta} \left\{ f_{\alpha\beta}(\frac{x}{\varepsilon}) + a_{ij}^{\alpha\beta}(\frac{x}{\varepsilon})u_{x_i x_j}(x) \right\}
\]
The Set-Up

Periodic Nonlocal Operator G

for all $z \in \mathbb{Z}^n$

$$G(u, x + z) = G(u(\cdot + z), x)$$

Our F will be periodic when $f^{\alpha\beta}$ and $K^{\alpha\beta}$ are periodic in x.

Translation Invariant Nonlocal Operator G

G is translation invariant if for any $y \in \mathbb{R}^n$,

$$G(u, x + y) = G(u(\cdot + y), x).$$
Main Theorem

Theorem (S. ‘08; Homogenization of Nonlocal Equations)

If F is periodic and uniformly elliptic, plus technical assumptions, then there exists a translation invariant elliptic nonlocal operator \bar{F} with the same ellipticity as F, such that $u^\varepsilon \to \bar{u}$ locally uniformly and \bar{u} is the unique solution of

\[
\begin{align*}
\bar{F}(\bar{u}, x) &= 0 \quad \text{in } D \\
\bar{u} &= g \quad \text{on } \mathbb{R}^n \setminus D.
\end{align*}
\]
Interpretations and Applications

- **Linear Case**— Determine effective dynamics of Lévy Process in inhomogeneous media

\[
f\left(\frac{X}{\varepsilon}\right) + \int_{\mathbb{R}^n} (u(x + y) + u(x - y) - 2u(x))K\left(\frac{X}{\varepsilon}, y\right)dy
\]

- **Optimal Control Case**— Determine an effective optimal cost of control of Lévy Processes in inhomogeneous media

\[
\inf_{\alpha} \left\{ f^{\alpha}\left(\frac{X}{\varepsilon}\right) + \int_{\mathbb{R}^n} (u(x + y) + u(x - y) - 2u(x))K^{\alpha}\left(\frac{X}{\varepsilon}, y\right)dy \right\}
\]

- **Two Player Game Case**— Determine an effective value of a two player game of a Lévy Process in inhomogeneous media

\[
\inf_{\alpha} \sup_{\beta} \left\{ f^{\alpha\beta}\left(\frac{X}{\varepsilon}\right) + \int_{\mathbb{R}^n} (u(x + y) + u(x - y) - 2u(x))K^{\alpha\beta}\left(\frac{X}{\varepsilon}, y\right)dy \right\}
\]
The Set-Up– Assumptions on F

“Ellipticity”

\[
\frac{\lambda}{|y|^{n+\sigma}} \leq K^{\alpha\beta}(x, y) \leq \frac{\Lambda}{|y|^{n+\sigma}}
\]

Scaling

\[
K^{\alpha\beta}(x, \lambda y) = \lambda^{-n-\sigma} K^{\alpha\beta}(x, y).
\]

Symmetry

\[
K^{\alpha\beta}(x, -y) = K^{\alpha\beta}(x, y)
\]
Recent Background– Nonlocal Elliptic Equations

Existence/Uniqueness (Barles-Chasseigne-Imbert)

Given basic assumptions on $K^{\alpha\beta}$ and $f^{\alpha\beta}$, there exist unique solutions to the Dirichlet Problems $F(u^\varepsilon, x/\varepsilon) = 0, \bar{F}(\bar{u}, x) = 0$.

Regularity (Silvestre, Caffarelli-Silvestre)

u^ε are Hölder continuous, depending only on $\lambda, \Lambda, \|f^{\alpha\beta}\|_\infty$, dimension, and g. (In particular, continuous uniformly in ε.)

Nonlocal Ellipticity (Caffarelli-Silvestre)

If u and v are $C^{1,1}$ at a point, x, then

$$M^-(u - v)(x) \leq F(u, x) - F(v, x) \leq M^+(u - v)(x).$$

$$M^- u(x) = \inf_{\alpha\beta} \left\{ L^{\alpha\beta} u(x) \right\} \quad \text{and} \quad M^+ u(x) = \sup_{\alpha\beta} \left\{ L^{\alpha\beta} u(x) \right\}.$$
Recent Background– 2nd Order Homogenization

The “Corrector” Equation (Caffarelli-Souganidis-Wang)

For each matrix, Q, fixed, $\bar{F}(Q)$ is the unique constant such that the solutions, v^ε, of

$$\begin{cases} F(Q + D^2v^\varepsilon, \frac{x}{\varepsilon}) = \bar{F}(Q) \text{ in } B_1 \\ v^\varepsilon(x) = 0 \text{ on } \partial B_1, \end{cases}$$

satisfy the decay property as $\varepsilon \to 0$, $\|v^\varepsilon\|_\infty \to 0$.

This generalizes the notion of the True Corrector Equation (Lions-Papanicolaou-Varadhan, 1st order HJE)

$\bar{F}(Q)$ is the unique constant such that there is a global periodic solution of

$$F(Q + D^2v, y) = \bar{F}(Q) \text{ in } \mathbb{R}^n.$$
Recent Background– 2nd Order Homogenization

The “Corrector” Equation (Caffarelli-Souganidis-Wang)

For each matrix, Q, fixed, $\bar{F}(Q)$ is the **unique** constant such that the solutions, v^ε, of

$$
\begin{cases}
F(Q + D^2 v^\varepsilon, x/\varepsilon) = \bar{F}(Q) \text{ in } B_1 \\
v^\varepsilon(x) = 0 \text{ on } \partial B_1,
\end{cases}
$$

satisfy the **decay property** as $\varepsilon \to 0$, $\|v^\varepsilon\|_\infty \to 0$.

This generalizes the notion of the

True Corrector Equation (Lions-Papanicolaou-Varadhan, 1st order HJE)

$\bar{F}(Q)$ is the unique constant such that there is a global periodic solution of

$$F(Q + D^2 v, y) = \bar{F}(Q) \text{ in } \mathbb{R}^n.$$
Perturbed Test Function Method

Need to Determine Effective operator

⇒ All information is in original operator

$F(\cdot, x/\varepsilon) = 0$

Can we perturb ϕ to $\phi + \nu^\varepsilon$
to COMPARE WITH u^ε???

$\bar{F}(\phi, x_0) \geq 0$

⇒ $F(\phi + \nu^\varepsilon, x/\varepsilon) = \bar{F} \geq 0$

To go BACK from comparison of $\phi + \nu^\varepsilon$ and u^ε
TO comparison of ϕ and u NEED

$|\nu^\varepsilon| \to 0$ as $\varepsilon \to 0$
Perturbed Test Function Method

Need to Determine Effective operator

\[F(\cdot, x/\varepsilon) = 0 \]

All information is in original operator

Can we perturb \(\phi \) to \(\phi + v^\varepsilon \) to COMPARE WITH \(u^\varepsilon \)???

\[F(\phi + v^\varepsilon, x/\varepsilon) = \bar{F} \geq 0 \]

To go BACK from comparison of \(\phi + v^\varepsilon \) and \(u^\varepsilon \) TO comparison of \(\phi \) and \(u \) NEED

\[|v^\varepsilon| \to 0 \text{ as } \varepsilon \to 0 \]
Strategy

- Most of the arguments for 2nd order homogenization are based on \textsc{comparision} + \textsc{regularity}
- Nonlocal equations have good \textsc{comparision} + \textsc{regularity} properties

\implies We should try to modify techniques of the 2nd order setting to the nonlocal setting
Difficulties Taking Ideas to Nonlocal Setting

- The space of test functions is much larger! $C^2_b(\mathbb{R}^n)$ versus S^n
- Test function space is not invariant under the scaling of the operators $u \mapsto \varepsilon^\sigma u(\cdot/\varepsilon)$
- $\bar{F}(\phi, \cdot)$ is a function, not a constant
- What should be the “corrector” equation? We can’t just “freeze” the hessian, $D^2\phi(x_0)$, at a point x_0
Bad Test Function Scaling, But Good F Scaling

\[
L^{\alpha\beta}[\varepsilon^\sigma u(\cdot \varepsilon)](x) = L^{\alpha\beta}[u](\varepsilon x)
\]

\[
L^{\alpha\beta}u(x) = \int_{\mathbb{R}^n} (u(x + y) + u(x - y) - 2u(x))K^{\alpha\beta}(\varepsilon x, y)dy
\]

Put The Test Function Inside

\[
\begin{cases}
F(\phi + \nu^\varepsilon, \varepsilon x) = \mu & \text{in } B_1 \\
\nu^\varepsilon(x) = 0 & \text{on } \mathbb{R}^n \setminus B_1,
\end{cases}
\]
Scaling Test Functions?

Bad Test Function Scaling, But Good F Scaling

\[
L^{\alpha\beta}[\varepsilon^{\sigma} u(\cdot)](x) = L^{\alpha\beta}[u](\frac{x}{\varepsilon})
\]

\[
L^{\alpha\beta} u(x) = \int_{\mathbb{R}^n} (u(x + y) + u(x - y) - 2u(x)) K^{\alpha\beta}(\frac{x}{\varepsilon}, y) dy
\]

Put The Test Function Inside

\[
\begin{cases}
F(\phi + v^\varepsilon, \frac{x}{\varepsilon}) = \mu \quad \text{in } B_1 \\
v^\varepsilon(x) = 0 \quad \text{on } \mathbb{R}^n \setminus B_1,
\end{cases}
\]
“Corrector” Equation

Equation for $\phi + v^\varepsilon$

\[F(\phi + v^\varepsilon, \frac{x}{\varepsilon}) = \]
\[\inf_{\alpha} \sup_{\beta} \left\{ f^{\alpha\beta}(\frac{x}{\varepsilon}) + \int_{\mathbb{R}^n} (\phi(x + y) + \phi(x - y) - 2\phi(x))K^{\alpha\beta}(\frac{x}{\varepsilon}, y)dy \right\} \]
\[+ \int_{\mathbb{R}^n} (v^\varepsilon(x + y) + v^\varepsilon(x - y) - 2v^\varepsilon(x))K^{\alpha\beta}(\frac{x}{\varepsilon}, y)dy \}

“Frozen” operator on ϕ at x_0

\[[L^{\alpha\beta}\phi(x_0)](x) = \int_{\mathbb{R}^n} (\phi(x_0 + z) + \phi(x_0 - z) - 2\phi(x_0))K^{\alpha\beta}(x, z)dz \]
“Corrector” Equation

equation for $\phi + v^\varepsilon$

$$F(\phi + v^\varepsilon, \frac{x}{\varepsilon}) =$$

$$\inf_{\alpha} \sup_{\beta} \left\{ f^{\alpha\beta}(\frac{x}{\varepsilon}) + \int_{\mathbb{R}^n} (\phi(x + y) + \phi(x - y) - 2\phi(x))K^{\alpha\beta}(\frac{x}{\varepsilon}, y)dy \right\}$$

“frozen” operator on ϕ at x_0

$$[L^{\alpha\beta}\phi(x_0)](x) = \int_{\mathbb{R}^n} (\phi(x_0 + z) + \phi(x_0 - z) - 2\phi(x_0))K^{\alpha\beta}(x, z)dz$$
“Corrector” Equation

Analogy to 2nd order equation

\[
\begin{align*}
a_{ij}\left(\frac{x}{\varepsilon}\right)(\phi + v)_{x_ix_j}(x) &= a_{ij}\left(\frac{x}{\varepsilon}\right)\phi_{x_ix_j}(x) + a_{ij}\left(\frac{x}{\varepsilon}\right)v_{x_ix_j}(x) \\
\text{and } a_{ij}\left(\frac{x}{\varepsilon}\right)\phi_{x_ix_j}(x) \text{ is uniformly continuous in } x.
\end{align*}
\]

Free and frozen variables, \(x\) and \(x_0\)

Uniform continuity (Caffarelli-Silvestre)

\([L^{\alpha\beta}\phi(x_0)](x)\) is uniformly continuous in \(x_0\), independent of \(x\) and \(\alpha\beta\)
NEW OPERATOR F_{ϕ,x_0}

$$F_{\phi,x_0}(v^\epsilon, \frac{x}{\epsilon}) = \inf_{\alpha} \sup_{\beta} \{ f^{\alpha\beta}(\frac{x}{\epsilon}) + [L^{\alpha\beta} \phi(x_0)](\frac{x}{\epsilon})$$

$$+ \int_{\mathbb{R}^n} (v^\epsilon(x + y) + v^\epsilon(x - y) - 2v^\epsilon(x)) K^{\alpha\beta}(\frac{x}{\epsilon}, y)dy \}$$

New “Corrector” Equation

$$\begin{cases} F_{\phi,x_0}(v^\epsilon, \frac{x}{\epsilon}) = \bar{F}(\phi, x_0) \quad \text{in } B_1(x_0) \\ v^\epsilon = 0 \quad \text{on } \mathbb{R}^n \setminus B_1(x_0). \end{cases}$$
Proposition (S. '08; “Corrector” Equation)

There exists a unique choice for the value of $\bar{F}(\phi, x_0)$ such that the solutions of the “corrector” equation also satisfy

$$\lim_{\varepsilon \to 0} \max_{B_1(x_0)} |v^\varepsilon| = 0.$$

(via the perturbed test function method, this proposition is equivalent to homogenization)
(Caffarelli-Sougandis-Wang... *In spirit)

Consider a generic choice of a Right Hand Side, \(l \) is fixed

\[
\begin{cases}
F_{\phi,x_0}(v_{l}^{\varepsilon}, \frac{x}{\varepsilon}) = l & \text{in } B_1(x_0) \\
v_{l}^{\varepsilon} = 0 & \text{on } \mathbb{R}^n \setminus B_1(x_0).
\end{cases}
\]

How does the choice of \(l \) affect the decay of \(v_{l}^{\varepsilon} \)?

Decay property

\[
\lim_{\varepsilon \to 0} \max_{B_1(x_0)} |v^{\varepsilon}| = 0 \iff (v_{l}^{\varepsilon})^* = (v_{l}^{\varepsilon})_* = 0
\]
Finding \bar{F}... Variational Problem

(Caffarelli-Sougandis-Wang... *In spirit)

Consider a generic choice of a Right Hand Side, l is fixed

$$
\begin{aligned}
F_{\phi,x_0}(v^\varepsilon, x^\varepsilon) &= l & \text{in } B_1(x_0) \\
v^\varepsilon &= 0 & \text{on } \mathbb{R}^n \setminus B_1(x_0).
\end{aligned}
$$

How does the choice of l affect the decay of v^ε?

decay property

$$
\lim_{\varepsilon \to 0} \max_{B_1(x_0)} |v^\varepsilon| = 0 \iff (v^\varepsilon)^* = (v^\varepsilon)_* = 0
$$
I very negative

$p^+(x) = (1 - |x|^2)^2 \cdot 1_{B_1}$ is a subsolution of equation $\implies (v_\varepsilon^*) > 0$ and we missed the goal.

$$\left(F_{\phi, x_0}(v_\varepsilon^*, \frac{x}{\varepsilon}) = I \right)$$
Variational Problem

\[\left(F_{\phi,x_0}(v_\varepsilon, \frac{x}{\varepsilon}) = l \right) \]

/ very positive

\[p^-(x) = -(|x|^2 - 1)^2 \cdot \mathbb{1}_{B_1} \] is a supersolution of equation

\[\implies (v_\varepsilon)^* < 0 \text{ and we missed the goal,} \]

Can we choose an \(l \) in the middle that is “JUST RIGHT”?
Variational Problem

\[(F_{\phi,x_0}(\nu^\varepsilon, \frac{x}{\varepsilon}) = l) \]

\[p^-(x) = -\left(|x|^2 - 1\right)^2 \cdot 1_{B_1} \] is a \textbf{supersolution} of equation

\[\implies (\nu^\varepsilon)^* < 0 \text{ and we missed the goal, but in the other direction.} \]

Can we choose an \(l \) in the middle that is “JUST RIGHT”?
Variational Problem

\[
\left(F_{\phi,x_0}(\nu_{i \epsilon}, \frac{x}{\epsilon}) = l \right)
\]

/ very positive

\[p^-(x) = -(|x|^2 - 1)^2 \cdot \mathbb{1}_{B_1} \] is a supersolution of equation

\[\implies (\nu^\epsilon_i)^* < 0 \text{ and we missed the goal, but in the other direction.} \]

Can we choose an \(\ell \) in the middle that is “JUST RIGHT”?
Variational Problem

Can we choose an / in the middle that is “JUST RIGHT”?
Obstacle Problem

(Caffarelli-Sougandis-Wang) The answer is YES.

Information From Obstacle Problem

The obstacle problem gives relationship between the choice of l and the decay of v^ε_l.
Obstacle Problem

The Solution of The Obstacle Problem In a Set A

\[U_A^l = \inf \{ u : F_{\phi,x_0}(u, y) \leq l \text{ in } A \text{ and } u \geq 0 \text{ in } \mathbb{R}^n \} \]

equation: \(U_A^l \) is the least supersolution of \(F_{\phi,x_0} = l \) in \(A \)

obstacle: \(U_A^l \) must be above the obstacle which is 0 in all of \(\mathbb{R}^n \)

Lemma (Hölder Continuity)

\(U_A^l \) is \(\gamma \)-Hölder Continuous depending only on \(\lambda, \Lambda, \| f^{\alpha\beta} \|_{\infty}, \phi, \) dimension, and \(A \).

Monotonicity and Periodicity of Obstacle Problem

If \(A \subset B \), then \(U_A^l \leq U_B^l \). For \(z \in \mathbb{Z}^n \), \(U_{A+z}^l(x) = U_A^l(x - z) \)
Obstacle Problem

The Solution of The Obstacle Problem In a Set A

\[U_A^l = \inf \{ u : F_{\phi,x_0}(u, y) \leq l \text{ in } A \text{ and } u \geq 0 \text{ in } \mathbb{R}^n \} \]

equation: U_A^l is the least supersolution of $F_{\phi,x_0} = l$ in A

obstacle: U_A^l must be above the obstacle which is 0 in all of \mathbb{R}^n

Lemma (Hölder Continuity)

U_A^l is γ-Hölder Continuous depending only on λ, Λ, $\|f^{\alpha\beta}\|_\infty$, ϕ, dimension, and A.

Monotonicity and Periodicity of Obstacle Problem

If $A \subset B$, then $U_A^l \leq U_B^l$. For $z \in \mathbb{Z}^n$, $U_{A+z}^l(x) = U_A^l(x - z)$
Obstacle Problem

NOTATION

Rescaled Solution

\[u^{\varepsilon, l} = \inf \left\{ u : F_{\phi, x_0}(u, \frac{y}{\varepsilon}) \leq l \text{ in } Q_1 \text{ and } u \geq 0 \text{ in } \mathbb{R}^n \right\}. \]

Solution in \(Q_1 \) and Solution in \(Q_1/\varepsilon \)

\[u^{\varepsilon, l}(x) = \varepsilon^\sigma U_{Q_1/\varepsilon}^l \left(\frac{x}{\varepsilon} \right) \]
Obstacle Problem

Dichotomy

(i) For all $\varepsilon > 0$, $U_{Q_1/\varepsilon}^I = 0$ for at least one point in every complete cell of \mathbb{Z}^n contained in Q_1/ε.

(ii) There exists some ε_0 and some cell, C_0, of \mathbb{Z}^n such that $U_{Q_1/\varepsilon_0}^I (y) > 0$ for all $y \in C_0$.

Lemma (Part (i) of The Dichotomy)

If (i) occurs, then $(v^\varepsilon_i)^* \leq 0$.

Lemma (Part (ii) of The Dichotomy)

If (ii) occurs, then $(v^\varepsilon_i)^* \geq 0$.
Dichotomy

(i) For all $\varepsilon > 0$, $U_{Q_1/\varepsilon}^l = 0$ for at least one point in every complete cell of \mathbb{Z}^n contained in Q_1/ε.

(ii) There exists some ε_0 and some cell, C_0, of \mathbb{Z}^n such that $U_{Q_1/\varepsilon_0}^l(y) > 0$ for all $y \in C_0$.

Lemma (Part (i) of The Dichotomy)

If (i) occurs, then $(v_l^\varepsilon)^ \leq 0$.*

Lemma (Part (ii) of The Dichotomy)

If (ii) occurs, then $(v_l^\varepsilon)^ \geq 0$.*
Obstacle Problem

Dichotomy

(i) For all $\varepsilon > 0$, $U^l_{Q_1/\varepsilon} = 0$ for at least one point in every complete cell of \mathbb{Z}^n contained in $Q_{1/\varepsilon}$.

(ii) There exists some ε_0 and some cell, C_0, of \mathbb{Z}^n such that $U^l_{Q_{1/\varepsilon_0}} (y) > 0$ for all $y \in C_0$.

Lemma (Part (i) of The Dichotomy)

If (i) occurs, then $(v^\varepsilon_i)^* \leq 0$.

Lemma (Part (ii) of The Dichotomy)

If (ii) occurs, then $(v^\varepsilon_i)^* \geq 0$.
Obstacle Problem

Dichotomy

(i) For all $\varepsilon > 0$, $U_{Q_1/\varepsilon}^l = 0$ for at least one point in **every** complete cell of \mathbb{Z}^n contained in $Q_{1/\varepsilon}$.

(ii) There exists some ε_0 and some cell, C_0, of \mathbb{Z}^n such that $U_{Q_1/\varepsilon_0}^l (y) > 0$ for all $y \in C_0$.

Lemma (Part (i) of The Dichotomy)

If (i) occurs, then $(v_1^\varepsilon)^ \leq 0$.*

Lemma (Part (ii) of The Dichotomy)

If (ii) occurs, then $(v_1^\varepsilon)^ \geq 0$.*
Obstacle Problem

Proof of First Lemma (If (i) occurs, then $(v^\varepsilon_i)^* \leq 0$)...

- Rescale back to Q_1.
 Definition of $u^{\varepsilon, l} \implies v^\varepsilon_i \leq u^{\varepsilon, l}$
- (i) $\implies u^{\varepsilon, l} = 0$ at least once in EVERY cell of $\varepsilon \mathbb{Z}^n$. Hölder Continuity $\implies u^{\varepsilon, l} \leq C\varepsilon^\gamma$.

![Graph showing the relationship between u_ε and v_ε within the domain Q_1. The graph illustrates the boundedness of u_ε and v_ε with $C\varepsilon^\gamma$.](attachment:graph.png)
Obstacle Problem

Proof of Second Lemma (If (ii) occurs, then \((v_i^\varepsilon)_* \geq 0)\)...

- Given any \(\delta > 0\), Periodicity, Monotonicity, and (ii) allow construction of a connected cube \(C_\varepsilon \subset Q_1\) such that \(u^{\varepsilon, l} > 0\) in \(C_\varepsilon\) and \(|C_\varepsilon| / |Q_1| \geq 1 - \delta\).
Proof of Second Lemma continued (If (ii) occurs, then \((v^\varepsilon_i)^* \geq 0\))

- Properties of \(u^\varepsilon, l\) \(\implies u^\varepsilon, l\) is a solution inside \(C_\varepsilon\).
- Comparison with \(v^\varepsilon_i\) and boundary continuity \(\implies u^\varepsilon, l - v^\varepsilon_i \leq C(\delta^{1/n})^\gamma\).
- Upper limit in \(\varepsilon\): \((-v^\varepsilon_i)^* \leq 0\)
- Same as \((v^\varepsilon_i)^* \geq 0\)
Choose a special l such that l is ARBITRARILY CLOSE to values that give (i) and values that give (ii).

The Good Choice of \bar{F}

$$\bar{F}(\phi, x_0) = \sup \left\{ l : (ii) \text{ happens for the family } (U'_{Q_1/\varepsilon})_{\varepsilon > 0} \right\}$$
Choice for \bar{F}

Choose a special l such that l is ARBITRARILY CLOSE to values that give (i) and values that give (ii).

The Good Choice of \bar{F}

$$\bar{F}(\phi, x_0) = \sup \left\{ l : (ii) \text{ happens for the family } (U_{Q_1/\varepsilon})_{\varepsilon>0} \right\}$$
Needed Properties for \bar{F}

Still need to show

Elliptic Nonlocal Equation

- $\bar{F}(u, x)$ is well defined whenever u is bounded and "$C^{1,1}$ at the point, x".
- $\bar{F}(u, \cdot)$ is a continuous function in an open set, Ω, whenever $u \in C^2(\Omega)$.
- Ellipticity holds: If u and v are $C^{1,1}$ at a point, x, then

$$M^- (u - v)(x) \leq \bar{F}(u, x) - \bar{F}(v, x) \leq M^+(u - v)(x).$$

Comparison

This follows from ellipticity and translation invariance.
Still need to show

Elliptic Nonlocal Equation

- \(\bar{F}(u, x) \) is well defined whenever \(u \) is bounded and “\(C^{1,1} \) at the point, \(x \)”.
- \(\bar{F}(u, \cdot) \) is a continuous function in an open set, \(\Omega \), whenever \(u \in C^2(\Omega) \).
- Ellipticity holds: If \(u \) and \(v \) are \(C^{1,1} \) at a point, \(x \), then
 \[M^- (u - v)(x) \leq \bar{F}(u, x) - \bar{F}(v, x) \leq M^+ (u - v)(x). \]

Comparison

This follows from ellipticity and translation invariance.
True Corrector Equation

Periodic Corrector

$\bar{F}(\phi, x_0)$ is the unique constant such that the equation,

$$F_{\phi, x_0}(w, y) = \bar{F}(\phi, x_0) \text{ in } \mathbb{R}^n$$

admits a global periodic solution, w.
Corollary: Inf-Sup formula

\[\tilde{F}(\phi, x_0) = \inf_{\{ W \text{ periodic} \}} \sup_{y \in \mathbb{R}^n} (F_{\phi, x_0}(W, y)) \]
Thank You!