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Răzvan Gurău
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Space-time and Scales

Space-time is one of the most fundamental notions is physics. In many theories
(e.g. quantum mechanics) it appears as a fixed background. The distances and
lapses of time are measured with respect to this fixed background.

In this setting, one has well defined distance (energy) scales. Physics at large
distance scales (low energy) is determined by the physics at shorter scales (high
energy). Quantum field theory, through the renormalization group flow, gives the
precise relationship between the fundamental (UV) theories and effective (IR)
theories.

General relativity promotes the metric to a dynamical variable. The scales
themselves become dynamical! One cannot distingush between fundamental and
effective phenomena! Naive solution: define the scales with some background
metric, and study the fluctuations around this metric. It does not work! Gravity
coupled to matter is non renormalizable around a flat vacuum!

Thus two major questions arise:

I How to define background independent scales ?

I How to obtain the usual space-time as an effective, IR phenomenon?
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Introduction Discretized Surfaces and Matrix Models Group Field Theory in three dimensions Colored GFT Conclusions

Space-time and Scales
Space-time is one of the most fundamental notions is physics. In many theories
(e.g. quantum mechanics) it appears as a fixed background. The distances and
lapses of time are measured with respect to this fixed background.

In this setting, one has well defined distance (energy) scales. Physics at large
distance scales (low energy) is determined by the physics at shorter scales (high
energy). Quantum field theory, through the renormalization group flow, gives the
precise relationship between the fundamental (UV) theories and effective (IR)
theories.

General relativity promotes the metric to a dynamical variable. The scales
themselves become dynamical! One cannot distingush between fundamental and
effective phenomena! Naive solution: define the scales with some background
metric, and study the fluctuations around this metric. It does not work! Gravity
coupled to matter is non renormalizable around a flat vacuum!

Thus two major questions arise:

I How to define background independent scales ?

I How to obtain the usual space-time as an effective, IR phenomenon?

2



Group Field Theory, UBC, 2009 Răzvan Gurău,
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A Non Exhaustive List of Approaches

String Theory: Postulate new matter fields. Replacing point particles by extended
objects (strings) one can in principle regularize the divergencies.

Canonical approach: Formulate a diffeomorphic covariant quantization scheme.
The evolution (Wheeler-deWitt) equations become constraints which one needs to
implement in the quantum theory.

Spectral triple: Start with the algebra of observables. Postulate a spectral action
and identify the space time only later.

Non-trivial fixed point: Bypass the puzzle of non renormalizability by postulating
the existence of a non-trivial ultraviolet fixed point. Flow away from this fixed
point in IR, and recover the usual gravity plus matter theory.

Discrete approaches: Build space-time out of discrete blocks, “space time quanta”,
and recover the usual gravity in the continuum limit.
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Scales and Blocking in Discrete Approaches

Historically Wilson’s renormalization group was first understood as a blocking
procedure averaging degrees of freedom on “small blocks” to obtain effective
behavior over “large blocks”. A blocking procedure automatically defines scales:
“small block” correspond to UV scales and “large blocks” correspond to IR scales.

A “good” blocking procedure can be recast into a path integral formulation. One
then combines UV graphs with many vertices to obtain renormalized graphs with
few vertices.

Discrete approaches to gravity have built in scales. “Large blocks” have many
space time quanta whereas “small blocks” have few.

Tasks:

I Find a procedure to discretize space time and associate weights to
discretizations.

I Formulate a path integral for the theory of all discretizations.

I Find a well defined transformation from finer to rougher discretizations.
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Metric and Holonomies

Let a manifold M, a closed curve γ(T ) = γ(0) ∈ M, and X the vector field
solution of the parallel transport equation

dγν

dt
∂νXµ + ΓµνσXν dγσ

dt
= 0 , X(0) = X0

Then X(T ) = gX0 for some g ∈ GL(TMγ(0)). g (independent of X0) is the Green
function of the parallel transport equation and is called the holonomy along the
curve γ. The information about the metric of M is encoded in the holonomies
along all curves.

Question: To what do I associate holonomies in a discretization of the manifold M?

We choose flat discrete n dimensional blocks. Their boundary (n − 1 dimensional)
is also flat. The curvature is located at the “joints” of these blocks, that is at
n − 2 dimensional blocks.

We associate a holonomy g to a discrete block of codimension 2, the same for all
curves γ which encircle it!
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Discretized Surfaces

First consider M a two dimensional surface, and fix a triangulation of M.

The holonomy group of a surface is G = U(1). To all vertices (points) in our
triangulation we associate a holonomy g , representing the transformation of a
vector under parallel transport along a small curve encircling the vertex.

g

g’

g’’

..........

The surface and its metric are specified by the connectivity of the triangles and the
holonomies g . The weight associated to a surface is a function F (g , g ′, . . . )

A “good” blocking procedure should combine the weights corresponding to all
metrics compatible with a triangulation and then combine all triangulations.
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The Dual Graph

The discrete information about the triangulation and metric of the surface can be
encoded in a ribbon (stranded) graph.

The ribbon vertices of the graph are dual to triangles and the ribbon lines of the
graph are dual to edges.

g
1

g
2

g
3

g
4

1

3

g

g

In the dual graph the group elements g are associated to the
sides of the ribbons, also called strands. We distribute them
on all ribbon vertices sharing the same strand.

Suppose that weight function F factors into contributions of dual vertices and dual
lines like

F =
∏
V

V (g1, g2, g3)
∏
L

K (g1, g2)

Then a stranded graph is a Feynman graph with fixed internal group elements of a
matrix model. Its weight is the integrand of the associated Feynman amplitude.
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A First Example of a Group Field Theory

The associated matrix model action is (φ(g1, g2) = φ∗(g2, g1))

S =
1

2

∫
G×G

φ(g1, g2)K−1(g1, g2)φ∗(g1, g2)

+λ

∫
G×G×G

V (g1, g2, g3)φ(g1, g2)φ(g2, g3)φ(g3, g1) ,

and the complete correlation function is

< φ(g1, g2) . . . φ(g2n−1, g2n) >=

∫
[dφ]e−Sφ(g1, g2) . . . φ(g2n−1, g2n) .

The insertions φ(g1, g2) fix a boundary triangulation and metric.

Each Feynman graph of the correlation function fixes a bulk triangulation. The
amplitude of a graph is the sum over all bulk metrics compatible with the fixed
bulk triangulation. The complete correlation function automatically performs both
sums!
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Scales in Matrix Models

Take K ,V = 1 and develop φ in Fourier series

φ(g1, g2) =
∑
Z×Z

eımg1e−ıng2φmn .

The action takes the more familiar form in Fourier space

S =
1

2

∑
mn

φmnφ
∗
mn + λ

∑
mnk

φmnφnkφkm .

The scales are then defined as follows: high scales, UV, correspond to large values
of matrix indices (|m|) whereas low scales, IR, correspond to low values of matrix
indices. In two dimensions our program is achieved...

But one needs to consider all the Feynman graphs (and there dual topological
spaces) generated by the matrix model action!
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Higher Dimensions

I Define a discretization of a n dimensional manifold.

I Build the class of dual graphs G.

I Find an action S whose Feynman graphs contain G.

I Identify scales.

I Analyze and classify all graphs generated by S .

I Define a renormalization transformation.
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GFT Action in Three Dimensions

In three dimensions we choose the holonomy group G = SU(2). Group elements
are associated to edges in the triangulation (codimension 2). The field φ is
associated to the faces of a tetrahedron (triangles), therefore it has three
arguments. The (real) quadratic part is

1

2

∫
G 3

φ(ga, gb, gc)K−1(ga, gb, gc)φ∗(ga, gb, gc)

φ is invariant under even permutations and transforms into its conjugate under
odd permutations. The vertex is dual to a tetrahedron. A tetrahedron is bounded
by four triangles therefore the vertex is a φ4 term

λ

∫
G 6

V (g , . . . , g)φ(g03, g02, g01)φ(g01, g13, g12)φ(g12, g02, g23)φ(g23, g13, g03)

The scales are again defined using the representations of SU(2). UV scales are
high values of j and IR scales are low values of j .
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The Tetrahedron and the GFT Vertex

In order to understand the combinatorics of the arguments in the GFT vertex one
needs to carefully label all the elements of a tetrahedron.

We label the vertices (points) 0 to 3. Edges
connect two vertices and we label them by the
couple of labels of there endpoints. Triangles
have three vertices and we label them by the
corresponding triple of labels.

1

2
3

0

(1,2)

(0,1,3)

The tetrahedron is dual to a vertex, its triangles are dual to halflines and its edges
are dual to strands. The fully labeled GFT vertex is

(123)

(023)

(013)

(012)

(02)

(23) (02) (03)

(03)

(13)

(01)

(01)(12)

(12)

(13)

(23)

The GFT lines connect two vertices,
thus are formed of three strands with an
arbitrary permutation. The graph built
with such vertices and lines is called a
stranded graph.
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Introduction Discretized Surfaces and Matrix Models Group Field Theory in three dimensions Colored GFT Conclusions

The Tetrahedron and the GFT Vertex
In order to understand the combinatorics of the arguments in the GFT vertex one
needs to carefully label all the elements of a tetrahedron.

We label the vertices (points) 0 to 3. Edges
connect two vertices and we label them by the
couple of labels of there endpoints. Triangles
have three vertices and we label them by the
corresponding triple of labels.

1

2
3

0

(1,2)

(0,1,3)

The tetrahedron is dual to a vertex, its triangles are dual to halflines and its edges
are dual to strands. The fully labeled GFT vertex is

(123)

(023)

(013)

(012)

(02)

(23) (02) (03)

(03)

(13)

(01)

(01)(12)

(12)

(13)

(23)

The GFT lines connect two vertices,
thus are formed of three strands with an
arbitrary permutation. The graph built
with such vertices and lines is called a
stranded graph.

12



Group Field Theory, UBC, 2009 Răzvan Gurău,
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Bubbles and Projection

Question: what is dual to a vertex (point) of the tetrahedron? The vertex is dual
to some three dimensional region. We call the two dimensional surface bounding
such a region a bubble. To identify a bubble we carve out the corners of all
tetrahedra to which the vertex belongs.

1

2
3

0

1
2

1
0

1
3

The tetrahedron (0123) will “project” into the
red triangle 121013. The triangle (012) will
“project” into the edge 1210. The edge (12)
will “project” into the point 12.

(123)

(012)

(013)
(12) 101

2

(13)
1

3 1
3 (13)

(01)

(12) (01)

The strand (12) will project in the strand 12.
The halfline (012) will project in the halfline
1210. The vertex (0123) will project in the red
vertex 121013.
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tetrahedra to which the vertex belongs.
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The tetrahedron (0123) will “project” into the
red triangle 121013. The triangle (012) will
“project” into the edge 1210. The edge (12)
will “project” into the point 12.
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(012)

(013)
(12) 101

2

(13)
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3 1
3 (13)
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(12) (01)

The strand (12) will project in the strand 12.
The halfline (012) will project in the halfline
1210. The vertex (0123) will project in the red
vertex 121013.
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Examples of Stranded Graphs

All the bubble graphs are planar: the bubbles are S2. The regions bounded by
bubbles are solid balls B3. The dual of this graph is a closed manifold.

There can exist bubbles whose graphs are non planar (eg a torus T2). The region
bounded by this bubble cannot be a ball! The dual of this graph is therefore not a
manifold, but a pseudomanifold.
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Singular Graphs

The vertices, lines and faces (closed strands) of graphs are always well defined.
But there exist graphs generated by the GFT action for which the bubbles are ill
defined! For instance

The dual of this graph has an extended singularity. Therefore

I We have a good discretization procedure in 3D.

I The resulting discretized spaces are dual to graphs. Scales are built in.

I The graphs can be generated by a path integral. The correlation functions
sum over triangulations and metrics with appropriate weights

I We know how to identify vertices lines faces and bubbles in the graphs.

I But we generate many singular, nonphysical graphs!
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Introduction Discretized Surfaces and Matrix Models Group Field Theory in three dimensions Colored GFT Conclusions

Singular Graphs

The vertices, lines and faces (closed strands) of graphs are always well defined.

But there exist graphs generated by the GFT action for which the bubbles are ill
defined! For instance

The dual of this graph has an extended singularity. Therefore

I We have a good discretization procedure in 3D.

I The resulting discretized spaces are dual to graphs. Scales are built in.

I The graphs can be generated by a path integral. The correlation functions
sum over triangulations and metrics with appropriate weights

I We know how to identify vertices lines faces and bubbles in the graphs.

I But we generate many singular, nonphysical graphs!

15



Group Field Theory, UBC, 2009 Răzvan Gurău,
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The Colored Model

We can build a new GFT action whose graphs are dual only to manifolds or
pseudomanifolds!

Color the triangles of the tetrahedron with colors 0, 1, 2, 3. This translates into
having four different fields ψp, one for each triangle.

Introduce positive and negative oriented tetrahedra. This means choose two
interaction terms, one involving ψp the other involving ψ̄p.

Only glue triangles of the same color on tetrahedra with opposite orientations.
That is connect only ψp with ψ̄p in the quadratic form.

S =
1

2

∫
G 3

∑
p

ψ̄pKψp +

∫
G 6

V (ψ0ψ1ψ2ψ3 + ψ̄0ψ̄1ψ̄2ψ̄3)

where the ψ’s have no symmetry properties. For Fermionic fields we have an
unexpected SU(n + 1) color symmetry!
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Colored Graphs vs. Stranded Graphs

All the lines in the graphs of this model have a color index. Vertices fall in two
categories, clockwise and anticlockwise turning. Lines connect opposing vertices.
Schematically a graph can be represented as a colored graph

0

1

2

3

which is a simplified
representation of a
stranded graph

0

1

2

3

The colored graph encodes completely the structure of the stranded graph To
obtain the stranded graph: expand the vertices into stranded vertices and the lines
into stranded lines with parallel strands
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Introduction Discretized Surfaces and Matrix Models Group Field Theory in three dimensions Colored GFT Conclusions

Colored Graphs vs. Stranded Graphs

All the lines in the graphs of this model have a color index. Vertices fall in two
categories, clockwise and anticlockwise turning. Lines connect opposing vertices.
Schematically a graph can be represented as a colored graph

0

1

2

3

which is a simplified
representation of a
stranded graph

0

1

2

3

The colored graph encodes completely the structure of the stranded graph To
obtain the stranded graph: expand the vertices into stranded vertices and the lines
into stranded lines with parallel strands

17



Group Field Theory, UBC, 2009 Răzvan Gurău,
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Boundary Operator and Graph Homology

The bubbles in a colored graph are always well defined and consists of all maximal
connected colored subgraphs with three fixed colors.

The faces (closed strands) are always well defined and consist of the maximal
connected subgraphs with two colors.

The lines are the connected subgraphs with one color, whereas the vertices are the
subgraphs with zero colors.

We define then a p-cell of our graph BCV ∈ Bp as the subgraph with set of vertices
V = {v1, . . . vn} and ordered set of colors C = {i1, . . . ip} ⊂ {0, 1, 2, 3}, and the
boundary operator dp

dp(BCV) =
∑

q

(−)q+1
∑

B′C′V′∈Bp−1, V′⊂V,C′=C\iq

B′C
′

V′ .

Any graph becomes a cellular complex. We can then compute homology groups of
graphs!
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Some Graphs and There Homology

For connected closed graphs we have H0 = Z, H3 = Z, Ker(d1) =
⊕

L−N+1 Z,
Im(d3) =

⊕
B−1 Z. The only operator which distinguishes between graphs is d2.
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Conclusions

What we have achieved:

I We gave a good discretization procedure of space time manifolds.

I We have organized the discretized models in GFT’s which have built in scales.

I GFT sums over all discretizations and metrics. But they generate singular
graphs.

I We defined the colored GFT’s which eliminate the singular graphs and we
discovered an unexpected color symmetry.

I We defined a boundary operator and homology groups of colored graphs.

A short program:

I Build a renormalization transformation such that manifold graphs dominate
the IR regime.

I Introduce matter fields.

I Define a graph cohomology.

I Promote the global color symmetry to a local symmetry.
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Introduction Discretized Surfaces and Matrix Models Group Field Theory in three dimensions Colored GFT Conclusions

Conclusions

What we have achieved:

I We gave a good discretization procedure of space time manifolds.

I We have organized the discretized models in GFT’s which have built in scales.

I GFT sums over all discretizations and metrics. But they generate singular
graphs.

I We defined the colored GFT’s which eliminate the singular graphs and we
discovered an unexpected color symmetry.

I We defined a boundary operator and homology groups of colored graphs.

A short program:

I Build a renormalization transformation such that manifold graphs dominate
the IR regime.

I Introduce matter fields.

I Define a graph cohomology.

I Promote the global color symmetry to a local symmetry.

20



Group Field Theory, UBC, 2009 Răzvan Gurău,
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