Zonal Jets, Dipole EOFs, and Annular Modes

Adam Monahan ¹ & John Fyfe²

monahana@uvic.ca & John.Fyfe@ec.gc.ca

¹ School of Earth and Ocean Sciences
University of Victoria

² Canadian Centre for Climate Modelling and Analysis
Meteorological Service of Canada
Introduction

- Characterisation of low-frequency variability (∼ 10 days +) of extratropical atmosphere important for
Introduction

- Characterisation of low-frequency variability (~ 10 days +) of extratropical atmosphere important for seasonal climate prediction
Introduction

- Characterisation of low-frequency variability (~ 10 days +) of extratropical atmosphere important for
 - seasonal climate prediction
 - assessing role of atmosphere in climate change
Introduction

Characterisation of low-frequency variability (\(\sim 10 \text{ days} \)) of extratropical atmosphere important for

- seasonal climate prediction
- assessing role of atmosphere in climate change
- deepening understanding of atmospheric dynamics
Introduction

- Characterisation of low-frequency variability (~ 10 days +) of extratropical atmosphere important for
 - seasonal climate prediction
 - assessing role of atmosphere in climate change
 - deepening understanding of atmospheric dynamics

- Standard characterisations of zonal-mean circulation variability:
Introduction

- Characterisation of low-frequency variability (~ 10 days +) of extratropical atmosphere important for
 - seasonal climate prediction
 - assessing role of atmosphere in climate change
 - deepening understanding of atmospheric dynamics

- Standard characterisations of zonal-mean circulation variability:
 - zonal winds: zonal index, “jet shift”
Introduction

- Characterisation of low-frequency variability (∼ 10 days +) of extratropical atmosphere important for
 - seasonal climate prediction
 - assessing role of atmosphere in climate change
 - deepening understanding of atmospheric dynamics

- Standard characterisations of zonal-mean circulation variability:
 - zonal winds: zonal index, “jet shift”
 - geopotential: annular modes, “polar vortex shift”
Introduction

- Characterisation of low-frequency variability (∼ 10 days +) of extratropical atmosphere important for
 - seasonal climate prediction
 - assessing role of atmosphere in climate change
 - deepening understanding of atmospheric dynamics

- Standard characterisations of zonal-mean circulation variability:
 - zonal winds: zonal index, “jet shift”
 - geopotential: annular modes, “polar vortex shift”

- Obtained as EOFs, often treated as interchangeable
Introduction

- Characterisation of low-frequency variability (≈ 10 days +) of extratropical atmosphere important for
 - seasonal climate prediction
 - assessing role of atmosphere in climate change
 - deepening understanding of atmospheric dynamics

- Standard characterisations of zonal-mean circulation variability:
 - zonal winds: zonal index, “jet shift”
 - geopotential: annular modes, “polar vortex shift”

- Obtained as EOFs, often treated as interchangeable

- Present study: how much of all of this can be understood from the kinematics of a fluctuating jet (without invoking complex dynamics)?
Empirical Orthogonal Functions (aka PCA)

- Covariance matrix of field \(u(x, t) \)

\[
C(x, x') = E \left\{ u(x, t)u(x', t) \right\} - E \left\{ u(x, t) \right\} E \left\{ u(x', t) \right\}
\]
Empirical Orthogonal Functions (aka PCA)

- Covariance matrix of field $u(x, t)$

$$C(x, x') = \mathbb{E}\{u(x, t)u(x', t)\} - \mathbb{E}\{u(x, t)\}\mathbb{E}\{u(x', t)\}$$

- EOFs: eigenfunctions of $C(x, x')$

$$\int C(x, x')E^{(j)}(x') \, dx' = \mu^{(j)}E^{(j)}(x)$$
Empirical Orthogonal Functions (aka PCA)

- Covariance matrix of field $u(x, t)$

$$C(x, x') = \mathbb{E}\{u(x, t)u(x', t)\} - \mathbb{E}\{u(x, t)\} \mathbb{E}\{u(x', t)\}$$

- EOFs: eigenfunctions of $C(x, x')$

$$\int C(x, x') E^{(j)}(x') \, dx' = \mu^{(j)} E^{(j)}(x)$$

- Principal components: time series of projections

$$\alpha^{(j)}(t) = \int u(x, t) E^{(j)}(x) \, dx$$
Empirical Orthogonal Functions (aka PCA)

- Covariance matrix of field $u(x, t)$

$$C(x, x') = \mathbb{E} \left\{ u(x, t)u(x', t) \right\} - \mathbb{E} \left\{ u(x, t) \right\} \mathbb{E} \left\{ u(x', t) \right\}$$

- EOFs: eigenfunctions of $C(x, x')$

$$\int C(x, x') E^{(j)}(x') \, dx' = \mu^{(j)} E^{(j)}(x)$$

- Principal components: time series of projections

$$\alpha^{(j)}(t) = \int u(x, t) E^{(j)}(x) \, dx$$

- EOFs orthogonal, PCs uncorrelated
Observed EOFs: Zonal Index and Annular Mode

Zonal Mean Geopotential $\Phi(\phi,t)$

Zonal Mean Zonal Wind $u(\phi,t)$
The Idealised Zonal Jet

Assume eddy-driven midlatitude jet described by

\[u(x,t) = U(t) \mathcal{F} \left(\frac{x - x_c(t)}{\sigma(t)} \right) \]

where

\[U(t) = U_0 (1 + l \xi(t)) \quad \text{jet strength} \]

\[x_c(t) = h \lambda(t) \quad \text{jet position} \]

\[\sigma^{-1}(t) = 1 + v \eta(t) \quad \text{jet width} \]
The Idealised Zonal Jet

- Assume eddy-driven midlatitude jet described by

\[u(x, t) = U(t) \mathcal{F}\left(\frac{x - x_c(t)}{\sigma(t)} \right) \]

- \(U(t) = U_0(1 + l \xi(t)) \) jet strength
- where \(x_c(t) = h \lambda(t) \) jet position
- \(\sigma^{-1}(t) = 1 + v \eta(t) \) jet width

- Observed: \(l << 1, h << 1, v << 1 \)
The Idealised Zonal Jet

- Assume eddy-driven midlatitude jet described by

\[u(x, t) = U(t) \mathcal{F} \left(\frac{x - x_c(t)}{\sigma(t)} \right) \]

\[U(t) = U_0 (1 + l \xi(t)) \] jet strength

where \(x_c(t) = h \lambda(t) \) jet position

\[\sigma^{-1}(t) = 1 + v \eta(t) \] jet width

- Observed: \(l \ll 1, h \ll 1, v \ll 1 \)

- Strength, width correlated \(\iff \) momentum "conservation"
The Idealised Zonal Jet

- Assume eddy-driven midlatitude jet described by
 \[u(x, t) = U(t) \mathcal{F} \left(\frac{x - x_c(t)}{\sigma(t)} \right) \]

 \[U(t) = U_0(1 + l \xi(t)) \] \text{jet strength}

 where \[x_c(t) = h \lambda(t) \] \text{jet position}

 \[\sigma^{-1}(t) = 1 + v \eta(t) \] \text{jet width}

- Observed: \(l << 1, \ h << 1, \ v << 1 \)

- Strength, width correlated ⇔ momentum “conservation”

- Geopotential related to zonal wind through geostrophy:
 \[\Phi(x, t) = - \int_{x_1}^{x} f(x') u(x', t) \, dx' + \int_{x_1}^{x_2} \left(\int_{x_1}^{x} f(x') u(x') \, dx' \right) \mu(x) \, dx \]

 (where second term imposes mass conservation)
Basis Functions: Symmetric Jet

- Define normalised basis functions $F_j(x)$:

$$F_j(x) = \frac{1}{N_j} \frac{d^j \mathcal{F}}{dx^j}$$

so that

$$\int F_j^2 \, dx = 1$$
Basis Functions: Symmetric Jet

- Define normalised basis functions $F_j(x)$:
 \[F_j(x) = \frac{1}{N_j} \frac{d^j \mathcal{F}}{dx^j} \quad \text{so that} \quad \int F_j^2 \, dx = 1 \]

- For $\mathcal{F}(x)$ localised jet with unique maximum:
 F_0 is a “monopole”, F_1 a “dipole”, and F_3 a “tripole”
Basis Functions: Symmetric Jet

- Define normalised basis functions $F_j(x)$:
 \[F_j(x) = \frac{1}{N_j} \frac{d^j \mathcal{F}}{dx^j} \]
 so that \[\int F_j^2 \, dx = 1 \]

- For $\mathcal{F}(x)$ localised jet with unique maximum:
 F_0 is a “monopole”, F_1 a “dipole”, and F_3 a “tripole”

- Assume bounded jet on domain wide enough so that even/odd derivatives of $F(x)$ orthogonal:
 \[\int F_j(x)F_k(x) \, dx = 0 \quad \text{for } j + k \text{ odd} \]
Basis Functions: Symmetric Jet

- Define normalised basis functions $F_j(x)$:

$$F_j(x) = \frac{1}{N_j} \frac{d^j \mathcal{F}}{dx^j}$$

so that

$$\int F_j^2 \, dx = 1$$

- For $\mathcal{F}(x)$ localised jet with unique maximum:

F_0 is a “monopole”, F_1 a “dipole”, and F_3 a “tripole”

- Assume bounded jet on domain wide enough so that even/odd derivatives of $F(x)$ orthogonal:

$$\int F_j(x) F_k(x) \, dx = 0 \quad \text{for } j + k \text{ odd}$$

- By definition:

$$\frac{d}{dx} F_j(x) = \frac{N_{j+1}}{N_j} F_{j+1}(x)$$
Analytic computation of EOFs

- Exploit “smallness” of fluctuations to transform EOF integral equation into matrix equation
Analytic computation of EOFs

- Exploit “smallness” of fluctuations to transform EOF integral equation into matrix equation
- E.g.: fluctuations in position alone

\[u'(x, t) = u(x, t) - \mathbb{E}\{u(x, t)\} = U_0 N_1 h \lambda F_1(x) + \frac{1}{2} N_2 U_0 (h \lambda)^2 F_2(x) + \ldots \]
Analytic computation of EOFs

- Exploit “smallness” of fluctuations to transform EOF integral equation into matrix equation
- E.g.: fluctuations in position alone

\[u'(x, t) = u(x, t) - E\{u(x, t)\} = U_0 N_1 h \lambda F_1(x) + \frac{1}{2} N_2 U_0 (h \lambda)^2 F_2(x) + ... \]

and so

\[C(x, x') = U_0^2 h^2 N_1^2 F_1(x) F_1(x') + \frac{U_0^2}{2} N_1 N_2 h^3 s_\lambda [F_1(x) F_2(x') + F_2(x) F_1(x')] \]

\[+ \frac{U_0^2}{4} N_2^2 h^4 (\kappa_\lambda + 3) F_2(x) F_2(x') + ... \]

(where \(s_\lambda, \kappa_\lambda \) skewness and kurtosis of \(\lambda \))
Writing EOF as $E_u(x) = \alpha F_1(x) + \beta F_2(x)$ gives matrix equation (to $O(h^4)$):

$$
\begin{pmatrix}
U_0^2 N_1^2 h^2 & \frac{1}{2} N_1 N_2 U_0^2 h^3 s_\lambda \\
\frac{1}{2} N_1 N_2 U_0^2 h^3 s_\lambda & \frac{1}{4} N_2^2 U_0^2 h^4 (\kappa_\lambda + 3)
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix} = \mu
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
$$

If $s = 0$, "dipole" $F_1(x)$ and "tripole" $F_2(x)$ both eigenvectors.

Dipole EOF dominant unless

N_2 very large $s = 0$ couples these basis functions in EOFs.
Analytic computation of EOFs

- Writing EOF as $E_u(x) = \alpha F_1(x) + \beta F_2(x)$ gives matrix equation (to $O(h^4)$):

$$
\begin{pmatrix}
U_0^2 N_1^2 h^2 & \frac{1}{2} N_1 N_2 U_0^2 h^3 s_\lambda \\
\frac{1}{2} N_1 N_2 U_0^2 h^3 s_\lambda & \frac{1}{4} N_2^2 U_0^2 h^4 (\kappa_\lambda + 3)
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
= \mu
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
$$

- If $s_\lambda = 0$, “dipole” $F_1(x)$ and “tripole” $F_2(x)$ both eigenvectors
Analytic computation of EOFs

- Writing EOF as \(E_u(x) = \alpha F_1(x) + \beta F_2(x) \) gives matrix equation (to \(O(h^4) \)):

\[
\begin{pmatrix}
U_0^2 N_1^2 h^2 & \frac{1}{2} N_1 N_2 U_0^2 h^3 s_\lambda \\
\frac{1}{2} N_1 N_2 U_0^2 h^3 s_\lambda & \frac{1}{4} N_2^2 U_0^2 h^4 (\kappa_\lambda + 3)
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
= \mu
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
\]

- If \(s_\lambda = 0 \), “dipole” \(F_1(x) \) and “tripole” \(F_2(x) \) both eigenvectors

- Dipole EOF dominant unless \(\kappa_\lambda \) or \(N_2 \) very large
Analytic computation of EOFs

- Writing EOF as \(E_u(x) = \alpha F_1(x) + \beta F_2(x) \) gives matrix equation (to \(O(h^4) \)):

\[
\begin{pmatrix}
U_0^2 N_1^2 h^2 & \frac{1}{2} N_1 N_2 U_0^2 h^3 s_\lambda \\
\frac{1}{2} N_1 N_2 U_0^2 h^3 s_\lambda & \frac{1}{4} N_2^2 U_0^2 h^4 (\kappa_\lambda + 3)
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
= \mu
\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}
\]

- If \(s_\lambda = 0 \), “dipole” \(F_1(x) \) and “tripole” \(F_2(x) \) both eigenvectors
- Dipole EOF dominant unless \(\kappa_\lambda \) or \(N_2 \) very large
- \(s_\lambda \neq 0 \) couples these basis functions in EOFs
Zonal Wind: Fluctuations in Single Variables

- **Strength Alone**: only one nontrivial PCA mode
Zonal Wind: Fluctuations in Single Variables

- **Strength Alone**: only one nontrivial PCA mode

\[E_u^{(1)}(x) = F_0(x) \quad \text{monopole} \]
Zonal Wind: Fluctuations in Single Variables

- **Strength Alone**: only one nontrivial PCA mode

\[E_u^{(1)}(x) = F_0(x) \text{ monopole} \]

- **Position Alone**: if \(\lambda \) unskewed

\[E_u^{(1)}(x) = F_1(x) \text{ dipole} \]

\[E_u^{(2)}(x) = F_2(x) \text{ tripole} \]
Zonal Wind: Fluctuations in Single Variables

- **Strength Alone**: only one nontrivial PCA mode

\[E_u^{(1)}(x) = F_0(x) \text{ monopole} \]

- **Position Alone**: if \(\lambda \) unskewed

\[E_u^{(1)}(x) = F_1(x) \text{ dipole} \]
\[E_u^{(2)}(x) = F_2(x) \text{ tripole} \]
Zonal Wind: Fluctuations in Single Variables

- **Strength Alone**: only one nontrivial PCA mode

\[E_u^{(1)}(x) = F_0(x) \quad \text{monopole} \]

- **Position Alone**: if \(\lambda \) unskewed

\[E_u^{(1)}(x) = F_1(x) \quad \text{dipole} \]
\[E_u^{(2)}(x) = F_2(x) \quad \text{tripole} \]

but skewness in \(\lambda \) mixes dipole and tripole
Strength Alone: only one nontrivial PCA mode

\[E_u^1(x) = F_0(x) \quad \text{monopole} \]

Position Alone: if \(\lambda \) unskewed

\[
\begin{align*}
E_u^1(x) &= F_1(x) \quad \text{dipole} \\
E_u^2(x) &= F_2(x) \quad \text{tripole}
\end{align*}
\]

but skewness in \(\lambda \) mixes dipole and tripole

Width Alone: leading EOF pattern
Zonal Wind: Fluctuations in Single Variables

- **Strength Alone**: only one nontrivial PCA mode

\[E_u^{(1)}(x) = F_0(x) \quad \text{monopole} \]

- **Position Alone**: if \(\lambda \) unskewed

\[
\begin{align*}
E_u^{(1)}(x) & = F_1(x) \quad \text{dipole} \\
E_u^{(2)}(x) & = F_2(x) \quad \text{tripole}
\end{align*}
\]

but skewness in \(\lambda \) mixes dipole and tripole

- **Width Alone**: leading EOF pattern

\[E_u^{(1)}(x) = xF_1(x) \]
Zonal Wind: Strength & Position Fluctuations

For ξ, λ independent & unskewed leading EOFs mix monopole, tripole:

\[
\begin{align*}
E^{(1)}_u(x) &= F_1(x) \\
E^{(2)}_u(x) &= \beta_0^{(+)} F_0(x) + \beta_2^{(+)} F_2(x) & \text{ mono/tripole hybrid} \\
E^{(3)}_u(x) &= \beta_0^{(-)} F_0(x) + \beta_2^{(-)} F_2(x) & \text{ mono/tripole hybrid}
\end{align*}
\]
Zonal Wind: Strength & Position Fluctuations

For ξ, λ independent & unskewed leading EOFs mix monopole, tripole:

\[
\begin{align*}
E_{u}^{(1)}(x) &= F_1(x) & \text{dipole} \\
E_{u}^{(2)}(x) &= \beta_0^{(+)F_0(x)} + \beta_2^{(+)F_2(x)} & \text{mono/tripole hybrid} \\
E_{u}^{(3)}(x) &= \beta_0^{(-)F_0(x)} + \beta_2^{(-)F_2(x)} & \text{mono/tripole hybrid}
\end{align*}
\]

- Mixing of monopole, tripole occurs $F_0(x), F_2(x)$ not orthogonal
For ξ, λ independent & unskewed leading EOFs mix monopole, tripole:

\[
E_u^{(1)}(x) = F_1(x) \quad \text{dipole}
\]
\[
E_u^{(2)}(x) = \beta_0^{(+)F_0(x)} + \beta_2^{(+)F_2(x)} \quad \text{mono/tripole hybrid}
\]
\[
E_u^{(3)}(x) = \beta_0^{(-)F_0(x)} + \beta_2^{(-)F_2(x)} \quad \text{mono/tripole hybrid}
\]

Mixing of monopole, tripole occurs $F_0(x)$, $F_2(x)$ not orthogonal

Degree of mixing determined by quantities

\[
\delta = \frac{(\kappa \lambda + 2)N^2_2}{4N^2_0} \frac{h^4}{l^2}, \quad F_{02} = \int F_0(x)F_2(x) \, dx
\]
Zonal Wind: Strength & Position Fluctuations

- For ξ, λ independent & unskewed leading EOFs mix monopole, tripole:

 \[E_{u}^{(1)}(x) = F_{1}(x) \]
 dipole

 \[E_{u}^{(2)}(x) = \beta_{0}^{(+)} F_{0}(x) + \beta_{2}^{(+)} F_{2}(x) \]
 mono/tripole hybrid

 \[E_{u}^{(3)}(x) = \beta_{0}^{(-)} F_{0}(x) + \beta_{2}^{(-)} F_{2}(x) \]
 mono/tripole hybrid

- Mixing of monopole, tripole occurs $F_{0}(x)$, $F_{2}(x)$ not orthogonal

- Degree of mixing determined by quantities

 \[\delta = \frac{(\kappa \lambda + 2) N_{2}^{2}}{4 N_{0}^{2}} \frac{h^{4}}{l^{2}} \]
 \[F_{02} = \int F_{0}(x) F_{2}(x) \, dx \]

- Leading PC time series couple position & strength fluctuations:

 \[\alpha_{u}^{(1)}(t) \sim (U_{0} + \xi(t)) \lambda(t) + h.o.t. \]
For Gaussian jet with $h = 0.3, l = 0.185$
Zonal Wind: Strength & Position Fluctuations

- For Gaussian jet with $h = 0.3$, $l = 0.185$

Skewness in $\lambda \Rightarrow$ EOFs asymmetric around jet axis; dipole still dominates even for strong skewness
Zonal Wind: Strength & Position Fluctuations

- Correlation of ξ, λ couples dipole with other basis functions in EOFs
Zonal Wind: Strength & Position Fluctuations

- Correlation of ξ, λ couples dipole with other basis functions in EOFs
- For perfect correlation $\xi = \lambda$, leading EOF mixes monopole and dipole:

$$E_u^{(1)}(x) = \frac{1}{\sqrt{1 + \epsilon^2}}(-\epsilon F_0(x) + F_1(x))$$
Correlation of ξ, λ couples dipole with other basis functions in EOFs

For perfect correlation $\xi = \lambda$, leading EOF mixes monopole and dipole:

$$E_{u}^{(1)}(x) = \frac{1}{\sqrt{1 + \epsilon^2}}(-\epsilon F_0(x) + F_1(x))$$

where

$$\epsilon = N_0 l \frac{N_0}{N_1 h}$$
Correlation of ξ, λ couples dipole with other basis functions in EOFs

For perfect correlation $\xi = \lambda$, leading EOF mixes monopole and dipole:

$$E_u^{(1)}(x) = \frac{1}{\sqrt{1 + \epsilon^2}} (-\epsilon F_0(x) + F_1(x))$$

where

$$\epsilon = \frac{N_0 l}{N_1 h}$$

For ϵ very small (large) dipole (monopole) dominates
Correlation of ξ, λ couples dipole with other basis functions in EOFs.

For perfect correlation $\xi = \lambda$, leading EOF mixes monopole and dipole:

$$E_u^{(1)}(x) = \frac{1}{\sqrt{1 + \epsilon^2}}(-\epsilon F_0(x) + F_1(x))$$

where

$$\epsilon = \frac{N_0 l}{N_1 h}$$

For ϵ very small (large) dipole (monopole) dominates.

For position, strength fluctuations of comparable width, coupling will be strong.
Dipole structure $F_1(x)$ will be EOF if
Dipole structure $F_1(x)$ will be EOF if
- fluctuations in λ not strongly skewed

That these fairly general facts are characteristic of the tropospheric jet in models & observations explain for dipole as generic feature of zonal wind EOFs.

While dipole arises because of position fluctuations, the associated EOF mode bundles together variability in all jet degrees of freedom.
Zonal Wind: General Case

- Dipole structure $F_1(x)$ will be EOF if
 - fluctuations in λ not strongly skewed
 - position fluctuations not correlated with strength or width
Zonal Wind: General Case

- Dipole structure \(F_1(x) \) will be EOF if
 - fluctuations in \(\lambda \) not strongly skewed
 - position fluctuations not correlated with strength or width
 - position fluctuations stronger than width

That these fairly general facts are characteristic of the tropospheric jet in models & observations explains for dipole as generic feature of zonal wind EOFs. While dipole arises because of position fluctuations, the associated EOF mode bundles together variability in all jet degrees of freedom.
Zonal Wind: General Case

- Dipole structure $F_1(x)$ will be EOF if
 - fluctuations in λ not strongly skewed
 - position fluctuations not correlated with strength or width
 - position fluctuations stronger than width

- That these fairly general facts are characteristic of the tropospheric jet in models & observations \Rightarrow explanation for dipole as generic feature of zonal wind EOFs
Zonal Wind: General Case

- Dipole structure $F_1(x)$ will be EOF if
 - fluctuations in λ not strongly skewed
 - position fluctuations not correlated with strength or width
 - position fluctuations stronger than width

- That these fairly general facts are characteristic of the tropospheric jet in models & observations \Rightarrow explanation for dipole as generic feature of zonal wind EOFs

- While dipole *arises* because of position fluctuations, the associated EOF mode bundles together variability in all jet degrees of freedom
EOFs of Dynamically Related Fields

- Geopotential related to zonal wind through linear transformation

\[\Phi(x, t) = - \int_{x_1}^{x} f(x')u(x', t) \, dx' + \int_{x_1}^{x_2} \left(\int_{x_1}^{x} f(x')u(x') \, dx' \right) \mu(x) \, dx \]
EOFs of Dynamically Related Fields

- Geopotential related to zonal wind through linear transformation

\[
\Phi(x, t) = - \int_{x_1}^{x} f(x') u(x', t) \, dx' + \int_{x_1}^{x_2} \left(\int_{x_1}^{x} f(x') u(x') \, dx' \right) \mu(x) \, dx
\]

- Dynamically related but distinct fields will not generally have same EOFs
EOFs of Dynamically Related Fields

- Geopotential related to zonal wind through linear transformation

\[\Phi(x, t) = -\int_{x_1}^{x} f(x')u(x', t) \, dx' + \int_{x_1}^{x_2} \left(\int_{x_1}^{x} f(x')u(x') \, dx' \right) \mu(x) \, dx \]

- Dynamically related but distinct fields will not generally have same EOFs
- Consider \(y = Lx \); covariances related by

\[C_{yy} = LC_{xx}L^T \]

EOFs of Dynamically Related Fields

- Geopotential related to zonal wind through linear transformation

 \[
 \Phi(x, t) = - \int_{x_1}^{x} f(x')u(x', t) \, dx' + \int_{x_1}^{x_2} \left(\int_{x_1}^{x} f(x')u(x') \, dx' \right) \mu(x) \, dx
 \]

- Dynamically related but distinct fields will not generally have same EOFs

- Consider \(y = Lx \); covariances related by

 \[
 C_{yy} = LC_{xx}L^T
 \]

- EOF decomposition of \(x \)

 \[
 C_{xx} = U\Lambda U^T
 \]
EOFs of Dynamically Related Fields

- Geopotential related to zonal wind through linear transformation
 \[\Phi(x, t) = -\int_{x_1}^{x} f(x')u(x', t) \, dx' + \int_{x_1}^{x_2} \left(\int_{x_1}^{x} f(x')u(x') \, dx' \right) \mu(x) \, dx \]

- Dynamically related but distinct fields will not generally have same EOFs

- Consider \(y = Lx \); covariances related by
 \[C_{yy} = LC_{xx}L^T \]

- EOF decomposition of \(x \)
 \[C_{xx} = U\Lambda U^T \]

 so

 \[C_{yy} = (LU)\Lambda(LU)^T \]

 and EOFs of \(y \) only EOFs of \(x \) if rows of \(LU \) orthogonal
 (which they won’t be in general)
Geopotential EOFs

- Can expand $u'(x, t) = u(x, t) - \langle u(x) \rangle$ over EOF basis:

$$u'(x, t) = \sum_{j=1}^{J} \alpha_u^{(j)}(t) E_u^{(j)}(x)$$
Geopotential EOFs

- Can expand \(u'(x, t) = u(x, t) - \langle u(x) \rangle \) over EOF basis:

\[
u'(x, t) = \sum_{j=1}^{J} \alpha_u^{(j)}(t) E_u^{(j)}(x)\]

\[
\Rightarrow \quad \Phi'(x, t) = - \sum_{j=1}^{J} \alpha_u^{(j)}(t) \left(\int_{x_1}^{x} f(x') E_u^{(j)}(x') \, dx' - \int_{x_1}^{x_2} \int_{x_1}^{x} f(x') E_u^{j}(x') \mu(x) \, dx' \, dx \right)
\]

\[
= - \sum_{j=1}^{J} \gamma_j \alpha_u^{(j)}(t) G^{(j)}(x)
\]
Geopotential EOFs

- Can expand $u'(x, t) = u(x, t) - \langle u(x) \rangle$ over EOF basis:

$$u'(x, t) = \sum_{j=1}^{J} \alpha_u^{(j)}(t) E_u^{(j)}(x)$$

$$\Rightarrow \Phi'(x, t) = - \sum_{j=1}^{J} \alpha_u^{(j)}(t) \left(\int_{x_1}^{x} f(x') E_u^{(j)}(x') dx' - \int_{x_1}^{x_2} \int_{x_1}^{x} f(x') E_u^{j}(x') \mu(x) dx' dx \right)$$

$$= - \sum_{j=1}^{J} \gamma_j \alpha_u^{(j)}(t) G^{(j)}(x)$$

- Functions $G_j(x)$ not generally orthogonal \Rightarrow not generally EOFs
Geopotential EOFs

- Can expand \(u'(x, t) = u(x, t) - \langle u(x) \rangle \) over EOF basis:

\[
u'(x, t) = \sum_{j=1}^{J} \alpha_u^{(j)}(t) E_u^{(j)}(x)\]

\[\Rightarrow \]

\[
\Phi'(x, t) = -\sum_{j=1}^{J} \alpha_u^{(j)}(t) \left(\int_{x_1}^{x} f(x') E_u^{(j)}(x') \, dx' - \int_{x_1}^{x} \int_{x_1}^{x} f(x') E_u^{(j)}(x') \mu(x) \, dx' \, dx \right)
\]

\[= -\sum_{j=1}^{J} \gamma_j \alpha_u^{(j)}(t) G^{(j)}(x)\]

- Functions \(G_j(x) \) not generally orthogonal \(\Rightarrow\) not generally EOFs
- Mass conservation constraint influences non-orthogonality
Geopotential EOFs: Strength, Position, & Width

- Gaussian jet, neglecting sphericity of Earth ($\mu(x) = f(x) = 1$)
Geopotential: Strength & Position Fluctuations (Flat)

\[\Phi'(x, t) \approx \alpha_u^{(1)}(t)G_1(x) + \alpha_u^{(2)}(t)G_2(x) \]
Geopotential: Strength & Position Fluctuations (Flat)

\[\Phi'(x, t) \simeq \alpha_u^{(1)}(t)G_1(x) + \alpha_u^{(2)}(t)G_2(x) \]
Geopotential: Strength & Position Fluctuations (Flat)

\[\Phi'(x, t) \simeq \alpha_u^{(1)}(t)G_1(x) + \alpha_u^{(2)}(t)G_2(x) \]

\[I = \int_{x_1}^{x_2} G_1(x)G_2(x) \, dx = -0.1 \]

- \(G_1(x), G_2(x) \) non-orthogonal:
Geopotential: Strength & Position Fluctuations (Flat)

\[\Phi'(x, t) \simeq \alpha_u^{(1)}(t)G_1(x) + \alpha_u^{(2)}(t)G_2(x) \]

\[I = \int_{x_1}^{x_2} G_1(x)G_2(x) dx = -0.1 \]

\[E^{(1)}_\Phi(x) = -0.58G_1(x) + 0.81G_2(x) \]
Geopotential: Strength & Position Fluctuations (Flat)

\[\Phi'(x, t) \simeq \alpha_u^{(1)}(t) G_1(x) + \alpha_u^{(2)}(t) G_2(x) \]

- \(G_1(x), G_2(x) \) non-orthogonal:
 \[\mathcal{I} = \int_{x_1}^{x_2} G_1(x) G_2(x) \, dx = -0.1 \]
 \[\Rightarrow \quad E_{\Phi}^{(1)}(x) = -0.58 G_1(x) + 0.81 G_2(x) \]

- Leading EOF of \(\Phi(x, t) \) mixes EOFs of \(u(x, t) \)
 (because of mass conservation)
Annular mode structure requires both strength and position fluctuations and mixes leading two EOFs of zonal wind.
Conclusions

- Zonal index and annular mode structures well-simulated by simple model of jet kinematics, but
Conclusions

- Zonal index and annular mode structures well-simulated by simple model of jet kinematics, but
 - individual EOF modes not individual jet degrees of freedom

- What about Earth's tropospheric jets, middle atmosphere, ocean jets, other planets?
Conclusions

- Zonal index and annular mode structures well-simulated by simple model of jet kinematics, but
 - individual EOF modes not individual jet degrees of freedom
 - individual EOF modes of dynamically-related fields will not generally coincide
Conclusions

- Zonal index and annular mode structures well-simulated by simple model of jet kinematics, but
 - individual EOF modes not individual jet degrees of freedom
 - individual EOF modes of dynamically-related fields will not generally coincide

- Dipole jet EOF generic feature if position fluctuations are strong, symmetric, and uncorrelated with other degrees of freedom
Conclusions

- Zonal index and annular mode structures well-simulated by simple model of jet kinematics, but
 - individual EOF modes not individual jet degrees of freedom
 - individual EOF modes of dynamically-related fields will not generally coincide
- Dipole jet EOF generic feature if position fluctuations are strong, symmetric, and uncorrelated with other degrees of freedom
- Analysis describes Earth’s tropospheric jets, but what about
Conclusions

- Zonal index and annular mode structures well-simulated by simple model of jet kinematics, but
 - individual EOF modes not individual jet degrees of freedom
 - individual EOF modes of dynamically-related fields will not generally coincide
- Dipole jet EOF generic feature if position fluctuations are strong, symmetric, and uncorrelated with other degrees of freedom
- Analysis describes Earth’s tropospheric jets, but what about
 - middle atmosphere?
Conclusions

- Zonal index and annular mode structures well-simulated by simple model of jet kinematics, but
 - individual EOF modes not individual jet degrees of freedom
 - individual EOF modes of dynamically-related fields will not generally coincide
- Dipole jet EOF generic feature if position fluctuations are strong, symmetric, and uncorrelated with other degrees of freedom
- Analysis describes Earth’s tropospheric jets, but what about
 - middle atmosphere?
 - ocean jets?
Conclusions

- Zonal index and annular mode structures well-simulated by simple model of jet kinematics, but
 - individual EOF modes not individual jet degrees of freedom
 - individual EOF modes of dynamically-related fields will not generally coincide
- Dipole jet EOF generic feature if position fluctuations are strong, symmetric, and uncorrelated with other degrees of freedom
- Analysis describes Earth’s tropospheric jets, but what about
 - middle atmosphere?
 - ocean jets?
 - other planets?