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T he neuroscience model

Synaptic strength between population ¢z and j:

{’LU_|_ — Wy 1= j

Wij = . .

w— —wy T FEJ

w weight excitation between neurons of a same population
w_ weight excitation between neurons of different populations
wr inhibitory weight coupling with all other neurons

A; sensory input to the population 2



The ODS system

The firing rates v1 = v1(t), vo» = vo(t) of two interacting neuron families
may be modeled as follows (Wilson-Cowan):

V] = —v1 T+ ¢ (A1 +2j=120wivj) + &
vp = =13+ ¢ (A2 + 2 j=12wov;) +§

where ¢ = £(t) is a white noise of standard deviation 52 (fluctuations)
the function ¢(x) (transfer response) is a sigmoidal function given by:

¢(x) =

Ve

1+ exp(—a(z/ve — 1))’

with o, v. € R.

A=A +AXN, AX=0o0r0.1

Remark: ¢ is strictly monotone and bounded.

[DM] G.Deco, D.Marti, Biological Cybernetics (2007)



Fokker-Planck equation

Let f(¢t,z,y) be a distribution function for ¢t > 0 and v = (v1,15) € Q, s.t.:

B B
Wf+V-(Ff)=ZAf=0, (Ff—5Vf>-n=0 (F'P)

with the flux F'f = (—v+ (A + W -v)) f not deriving by a potential V:
z1 = A+ wiiv1 + wiove #F A+ wiovy + wiive = 22 == wi2¢'(21) # wi2¢'(22)
Moreover F' verifies:

V.F<0 (H1)
F.n<0 (H2)
Qfdyz (H3)

[AC] A. Arnold, E.Carlen, EQUADIFF 99, Proc. Intern. Conf. Diff. Egs. (2000)



Stationnary problem

Consider now the stationanry problem associated to (P):

5° 52
Af=—§Af+V-(Ff)=O, <Ff—§Vf>-n=O (5)

Theorem: Assume (H2) and (H3),
then there exists a unique positive solution f.(v) to (S5).

Proof: Based on Krein-Rutman theorem :
o T:L%(Q) — L?(), s.t. Vg & L?(Q), Tg = f, with f the unique solution of :

2
Af+pf =g in £, (Ff—%Vf)-nZO on 052

e T : H2 — H? is a compact operator, and T : K — K strong. pos., with K = WJQF’Q(Q).
e KRth. = r(T) >0and 3¢9 >0s.t. Tg=r(T)g. So that,

1
Af +pf=Xf, f=r(T)g>0, X= (D)

Af=A—p)f :>()\—p)/fda:=O = p=X = Af=0.
Q

and



Time depending problem

We consider the parabolic problem:

52
of+Af =0, (Ff—?Vf)n:O

and the initial condition: fo(:) € L2()
Theorem: Assume that (H1) holds,
then (P) has a unique solution f(t,x,vy).

Consider the bilinear form associated to A:

2
a(t,f,g)zf 6—Vf~ngv—/fF-ngv, Vfge H(Q),
o 2 Q

e a(t,f,g) is continuous,

e a(t,f,g)+p<f,g> is coercive for p € R large enough.

Remark : Maximum principle doesn’t apply.

(P)

(a)



Generalised relative entropy

Theorem: Let fq, f» > 0 solutions of (P), and g > 0 a solution of :

2
{atg =-F.-Vg—-Zng, inQx[0,T),

then we have:

d ﬁz 17 2
— Hd =——/ H" |V dv <0, V H convex.
dt/ngl v 5> Jo If1E [V{f2/ )" dv =

Proof : & [gfiH] = -V - [FgfiH]+ 5V - |¢?V (LH)| - Zonm" |V (F)|°

From this we can proove positivity of the solution f of (P) and its L2
convergence to the stationnary solution fo of (5).

[MMP] P. Michel, S.Mischler, B.Perthame, J.Math. Pures Appl. (2005).



Numerical approximation - FVM

Let f%(i,5) = f(kAt,n;,n;) with n; = (i +2)ANy, i =0..N1 — 1 and n; = (j + ) ANy, j =
0...N> — 1. Then, the discretised Fokker-Planck equation is given by:
G0 = fRG, )
+ At(FG+1/2,5) - F'(i—1/2,5)) /AN
+ At(GG,5+1/2) — GF(i,5 — 1/2)) /AN,
with: F*(i 4 2,5), G¥(i,j + 2) the fluxes at the interfaces:

FFG4+1/2,5) = (—nip12 + PO+ wiinip1/o + wiony)) X6+ 1/2,5)
P - N ks
AN (f*G+1,75) — f°G, 7)),
G (i,j +1/2) = (—njq12+ P+ warni + waonjt1/2)) 7,5+ 1/2)
62

1) — :
ST (ffG,7+1) — @, 5))
and we choose the most simple interpolation at the interfaces for f:
. . PG +1,5) + f*G,9) - G5+ 1) + 5@, 5)
fAli+1/2,5) = > . G+ 1/2) = > .
Remark adaptative At (gain factor 100) = for 4,5 s.t. f*(i,5) #= 0 and F*(i,j) # O:




Computed gquantities

Marginals of f(¢,v1,vo) with respect to v», and to vy :

N1(t,v1) Z/OMf(t,Vlal/z)dVQ, No(t,vp) Z/CJMf(t,V1,V2)dV1-

First order moments :
w;(t) = //Q v;f(v1,v0,t)dvidry, 1=1,2
Second order moments :
v (t) = //Q vivif(v1,vo,t)dvidra, 1,5 = 1,2.

Distributions p;(t) with respect to the domains, 2;, with i =1,2,3 :

pi(t) = //Qif(VLVQat)dVldVQ-

We choose N1 = N, = 200 points of discretisation, and compute the solution
up to a precision of order 10~19, with the same values used in [1]. (3 = 0.3,
a=4, v =20, A=15. )



Time evolution for the marginals
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Evolution from one initial gaussian distribution centered in S = (3.3,3.3) -

near the unstable point Sop = (3.19,3.19) - to a double picked distribution
centerd on the two stable points S; and S55.



Equilibrium state

00337

Contour levels of the density f(vq,v») at equilibrium. We note that there
are two points of mass concentration around S; = (1.32,5.97) and S, =
(5.97,1.32) which are the stable equilibrium points of the ODS.



Densities distributions

Probablity densities p,;(t), + = 1,2,3, computed on three different domains
1 = [5,10] x [0,2], 25 = [2,5] x [2,5], 23 = [2,5] x [5, 10].

Each domain contains one of the three equilibrium points.

The initial condition = p1(0) = p3(0) = 0 and p>(0) = 1.



Escaping time

Let f(0,vq,r2) be a gaussian distribution centered in S;1 and 3 =0.2, ..., 1.
Let 7" be the escaping time (ie. the time needed for half of the mass to pass

from the neighborhood of S; to the neighborhood of S5) : p1(T) < 2p3(T).
Then T has an exponential behaviour :

I6; 0.2 0.3 0.4 0.5 0.6 | 0.7/ | 0.8 | 0.9 1
7 11290.3 | 332.7 | 168.5 | 109.3 | 7r8.2 | 60.9 | 48.0 | 37r.1 | 32.1

Escaping time T with respect to the diffusion coefficient 8 in log scale



Slow-fast behaviour

The blue lines are numerical
approximations of the solution
of the deterministic system

v1 = —v1+ ¢ (A4 2 =12w1V;
vp = —vo+ ¢ (A4 2 =1 2 wo,v;

and highlight the slow manifold
to which Dbelongs the stable
and unstable solutions of this

L LS T ) TS system
One realisation of a trajectory = fast to the manifold, slow on
for the ODS starting in (5,5) the manifold

[BG] N.Berglund, B.Gentz, Noise-Induced Phenomena in Slow-Fast Dynamical Systems.

A Sample-Paths Approach. Springer, Probability and its Applications (2005)



Towards a one-dimensional problem

The change of variables: * = v + v, y = 1 — vy leads to the system :
ex = h(x,y) o Oyg
gy=g(z,y) Oh

It is possible to find a function z*(y) and to reduce the system to a one-
dimensional equation defined on the slow manifold :

|55

y = g(z"(v),y)

Taking into account the white noise, the original FP model, reduces to a
FP equation, for which the unknown distirbution function depends on time
t and the y variable, and the equilibrium solution is given by an exponential
function:

exp <?> , G = 9yg(z™(y),y)



Conclusions and Perspectives

e We present theoretical results concerning the existence, uniqueness, pos-
itivity of the solution for the model (non-potential frame), and its con-
vergence towards the solution of the stationnary associated problem.

e We propose a kinetic model for the evolution of two interacting popula-
tions (decision making), based on neurodynamical systems.

e Our numerical results agree with those find by G.Deco et al. applying
moments methods on the ODS.

e Investigate the slow-fast behavior of the ODS and derive a one-dimensional
pde for the distribution function defined along the slow-manifold.

e Study the system in the biased case (A1 # X»), or including some adap-
tation in rivalry term in the sigmoidal function.

e Stochastic Models in Neuroscience,
18-22 January 2010,
CIRM, Marseille (France).
http://www.fdpoisson.org/colloques/neurostoch/



