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Introduction

We consider the Dirichlet problem

Mlu](x) = f(x) inQ,
u(x) = g(x) for xz € 01,

(DI)

Here

Q CR™ abounded domain,
fec,R), geC(ON,R) given functions,
u € C(Q,R) the unknown function,



Introduction

p—o
Mu)(x) := p.v./ o
B(0,p()) 2]
X |lu(z + 2) — u(z) P2 (u(z + 2) — u(z)) dz,
p(x) := dist (x, 090), 1<p<oo, 0<o<p.
Questions:

The solvability of the Dirichlet problem (DlI),
The asymptotic behavior of solutions u, of (DI) as o — p.
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Viscosity solutions approach to (DlI)
Space 7,(92)
o T,(R) = C?(N) ifp > 2.
o 7,(R2) for 1 < p < 2 denotes the space of functions
¢ € C?(2) having the property:
for each compact R C 2 there exist a neighborhood

V C Q of R and constants 3 >1/(p—1) and A > 0
such that for any y € R, if D¢ vanishes at y, then

lp(x) — d(y)| < Alx — y[PTL forall z € V.



Introduction

Any bounded function u in €2 is said to be a (viscosity)
subsolution of (DI) if

M*[u*)(x) > f(x)
whenever (z, ¢) € Q X T,(2) and u* — ¢ has a maximum

at x.

o The operator M7 is defined by
M™T[v](x) = limsup/ Gv(rx+z)—v(z))K(z)dz,
6—0+ Jé<|z|<p(x)

where

p—oO

G(r):=|r|P"%r and K(z)= P
z n—+o

o u* denotes the upper semicontinuous envelope of wu.
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@ u supersolution
M~ [u.](z) < f(=),

wherever ¢ € 7,(2) and u, — ¢ attains a minimum at
x, where

M~ [o](z) = lim jnf /5<|z|<p(w) G(v(z+2)—v(x))K(2) d=

and u, denotes the lower semicontinuous envelope of wu.

@ u solultion <= wu subsolution & supersolution.
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o (2 satisifes the uniform exterior sphere (UES for short)
condition if and only if

IR > 0, Vy € 89, 3z € R*, B(z,R) N Q = {y}.

Let f € C(€Q). Assume that 0 < o < p and that  satisfies
UES condition. Then there exists a unique solution of (DI).

Set asi o1
_ 72 (%)
L("32)
and consider the p-Laplace equation with the Dirichlet data
vApu(z) = f(x) inQ,
{ u=g on 912.

)

(DpL)



Recall that
Apv(x) = div (|D'u(ac)|p_2Dv(ac)) ,
and

p_
|z|n+a"

Assume that (2 satisfies UES condition. Let u, be the
solution of (DI). Let v be the solution of (DpL). Then

Ug(x) — v(x) uniformly on Q as o — p.




@ Recently there has been much interest in
integro-differential equations. Caffarelli-Silvestre,
Silvestre, Barles, Forcadel, Monneau, Imbert,.... Most
results are concerned integral operators with Lipschitz
continuous G. The paper by Caffarelli-Silvestre has
drawn our attention to the convergence question taken
in Theorem 2. The generator of Levy processes in
mathematical finance, nonlocal front propagations,...

e Regarding Theorem 2, Andreu-Mazon-Rossi-Toledo have
studied similar problems with the Dirichlet condition and
the Neumann condition. They study integral equations
with continuous kernels. The p-Laplace equations
appear in the scaling limit as ¢ — 0+ and

K(z) = epi_nJ(|z|/s), where J € Cy([0, c0)).



e It is not clear right now if problem (NI), the problem
(DI1) where the Neumann condition du/9n replaces the
Dirichlet condition, has a conclusion similar to Theorems
1 and 2.

e If & > 0, then (DI) can be solved even with f € C(92)
having the property that lim, 50 |f(x)| = co. On the
other hand, if & < 0, then the solvability of (Dl) is
guaranteed only when lim,_, 50 f(x) = 0 with an
appropriate convergence rate.

@ In the definition of M, one may replace the domain of
integration, B(x, p(x)), by some other choices. For
instance, if we replace B(x, p(x)) by B(x, Ap(x)), with
0 < A < 1, then we still have the same conclusions as
Theorems 1 and 2 except the uniqueness assertion of
Theorem 1.



o It is interesting to see which p-Laplace equation we get
when K (z) is replaced by (p — o)/||z||P~7, where ||z||
is a norm of R™.



Associated with the integral equation M [u] = f is the
following interacting particle system: fix any € > 0, set
K¢(x) = e™K(ex), and consider the system of ODE

¢ (kyt) = Z K*(j)G(v¢(k+j,t) —v°(k,t)), k € Z",
jezm\{0}

where v¢ : Z™ X [0,00) — R is the unknown.

If we define u®(x,t) = v¢(|x/e],t) and set

u(x,t) = limg_,0 u(x,t), then the function u should solve
the integral equation

Mu] = us in R™ x (0,00).



Stability Results



We are concerned with

(1) Mul(z) = f(z) in Q.

THEOREM 3
Let Sp be a non-empty set of subsolutions of (I). Assume
that the family Sy is uniformly bounded on 2. Define the

function u : Q2 — R by
u(z) = sup{v(xz) | v € Sp}.

Then the function u is a subsolution of (I).




THEOREM 4
Let {u,} be a sequence of subsolutions of (I). Assume that

the collection {u,} is uniformly bounded on €2. Define
u: 2 — R by

u(w):kli)rgo sup{un,(y) |y € B(m,k_l), n > k}.

Then u is a subsolution of (I).




Let
Pp~ €ST(N)NLSC(N) and T €8T (Q)N USC(Q).
Here

S8~ = the space of subsolutions ,

S8t = the space of supersolutions.

Assume that ¢y~ < 97T in Q. Set
(P)
u(z) = sup{v(z) | v € §7(Q), ¥~ <v<yT in Q).

Note that u : © — R is bounded.

The function u given by (P) is a solution of ().
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Lemmas

Let 0 < 6 < p(x) and set

M;‘[qb] () = lim sup /€<|z|<6 G(p(x+ z) — d(x))K(2) d=z.

e—>0+

LEMMA 1
Assume that p > 2 and that there are a vector ¢ € R™ and a
constant C' > 0 such that

u(x 4+ 2) —u(x) < qg-z+Clz|> for z € B(0, d).

Then there is a constant C; > 0, depending only on n, such
that

M [u](z) < C1C(|gq| + 6C)P~26777.
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LEMMA 2
Assume that 1 < p < 2 and there are a vector g € R™ \ {0}
and a constant C' > 0 such that

u(x +2) —u(z) < q-z4+Clz|*> for z € B(0, J).

Then there is a constant C'; > 0, depending only on p and
n, such that

M [u](z) < C1C|q[P~2877°.




Lemmas

Letl1<p<2and 3>1/(p—1). Set

p(x) = |=|”*.

There is a constant C; > 0 depending only on 3, p and n
such that for any = € B(0,4),

M [¢](x) < CLoB+DE-1)=0

Remark that ¢ € 7,(R™) and

B+1)p—-1)—6>14+(p—-1)—0c=p—0c>0.
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LEMMA 4
Let 6 > 0, {xzx} C 2 and zp € Q. Let {ur} be a sequence
of bounded measurable functions on €2 and u a bounded

measurable function on Q. Assume that {u;} is uniformly
bounded on Q and (zk, ur(zk)) — (o, u(xo)) as k — oo.
Assume that for z € (2,

lim sup{ux(y) |y € B(z,5~ 1) NQ, k> j} < u(z).
j—o0
Then
lim sup G(ug(zr + z) — u(xr)) K (z) dz
k—oco  JB(0, p(xk))\B(0, &)

<

/ G (u(wo + 2) — u(wo)) K (2) dz.
B(0, p(20))\B(0,8)
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Comparison

Let u € USC(Q) and v € LSC(Q) be a subsolution and a
supersolution of (1), respectively. Assume that u < v on 92

and u and v are bounded on Q. Then u < v in Q.

e PROOF
We suppose m := max(u — v) > 0 and get a contradiction.
Let x € © be a maximum point. We have

(u—v)(z) <m=(u—v)(x) forzeN
and hence

u(z) —u(x) <v(z) —v(x) forz e Q.



Comparison

Let U = {y € 2| dist (y,9N) < €}, with a small € > 0.
We may assume that

(u—v)(z)<— < (u—v)(a:)——) for z € U.
Consequently,

u(z) —u(z) <v(z) —v(z) — % for z ¢ U.



Comparison

Then, formally,

F) < / G(u(2) — u(y) K (y — =) d=
B(y,p(y))

— (/ + ... dz
B(y,p(y))NU B(y,p(y))\U

< G(v(z) —v(y) —m/2)K(y — z)dz

/B (y,p(y))NU

+ G(v(z) —v(y))K(y — z)dz
B(y,p(y))\U

< G(v(z) — v(y)K(y — 2)dz = £(3).
B(y,p(y))
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THEOREM 7

Let 0 > 0 and f € C(€2). Assume that (2 satisifes UES
condition. There exist functions ¥+ € USC(Q) and

¥~ € LSC(Q) such that 1T (resp., 1»~) is a supersolution
(resp., subsolution) of (1), v~ < 41 on Q and ¢» = g on
oN.

Remark. For fixed p and 0 < og < p, as far as og < o < p,
the functions % can be chosen independently of o.

e When g € C?%(Q2), we construct the functions 1= by
setting
PpE(x) = g(x) + Adist (z, 9Q)°

near the boundary, 92, where € > 0 is chosen
sufficiently small and A > 0 sufficiently large.
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Convergence

We consider the p-Laplace equation

(pL) vApu(z) = f(x) in Q.

THEOREM 8
Assume that (2 satisfies UES condition. Then there is a
(unique) weak solution u € W,P(2) N C(R2) of (DpL).

Any weak subsolution (reps., supersolution)
u € Wli’f(ﬂ) N C(f2) of (pL) is a viscosity subsolution
(resp., supersolution) of (pL).




Convergence

Assume that 2 satisfies UES condition. Let u € USC(Q)
and v € LSC(Q) be, respectively, viscosity sub and

supersolutions of (pL). Assume that u < v on 2. Then
u < vin (.

e OUTLINE OF THE PROOF OF CONVERGENCE
The half relaxed limits u* of u, are defined by

ut(x) = lim sup{u,(y) |y € B(z,e) N Q, p—e < o < p},
e—0+

u” () :EE)I(I)1+ inf{u,(y) |y € B(z,e)NQ, p—e <o < p}.



Convergence

We show that ut and u~ are sub and supersolution of (pL),
respectively. The existence of barrier functions for (DpL)
yields

ut =u~ on 9N.

By comparison (Theorem 10), we find that u™ = u~ on ,
which implies that the uniform convergence of u, to the
unique solution of (DpL).



Convergence

e THE CONSTANT v

Suppose that u,(z) = ¢(x) near x = 0 € Q2 for a fixed
¢ € C? and that D¢(0) = (0,...,0,q). Set

A = (aij) := D?®(0). For z = 0, compute that

Az -z
2qzn

G(8(2) — $(0)) ¥G(@zn + 5 Az -2) = Glaza)G(1+ )
Az -z

2qz,

~Ggz) (1 + G (1) 2 5)

p—1 _
=G(qzn) + T|qzn|p 2Az - z,



Convergence

For & > O sufficiently small, we compute
M{us](0) = M[¢](0)
-1
~ (G(gzn) + pT|qzn|p_2Az -2)K(z)dz

B(0,6)
by symmetry,

—1)(p—0)|qlP72 &
_ (p )(p )lal Z/ aiiz?|znlp—2|z|n+a dz.
i—1/B(0,5)

2

Thus,

M{u,](0) ~ 1/|q|p_25p_"< S ai+ (p - 1)a,m).

<n



Convergence

Sending o — p, we get

Mo [ug](0) — Mo [8)(0) = vigl"~( Y aii + ann).

i<n

On the other hand, we have

Ap9(0) =|q|P72A¢(0) + (p — 2)|q/P *q*ann
=[qP"2Y " aii + (p — 2)|g/P2ann

:|q|p_2< Z ai; + (p — l)ann>.

<n
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