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Let

e K be a field equipped with a set V of discrete
valuations;

e G an absolutely almost simple algebraic K-group
(typically simply connected or adjoint)

We are interested in analyzing

K-forms of G that have good reduction at all v e V. J
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A K-group G' is a K-form (or K/K-form) of G if
G @k K ~ G ®x K (where K is a sep. closure of K).

Examples.

1.If A is a central simple algebra of degree n over K,
then G'=SL;4 is a K-form of G =SL,.
2.1f g is a nondegenerate quadratic form in n variables over
K (charK #2) and

G = Spin, (q),
then for any other nondegenerate quadratic form 4 in n
variables,

G’ = Spin, (¢')
is a K-form of G.

If n is odd, then these are all K-forms.

Otherwise, there may be K-forms coming from hermitian forms
over noncommutative division algebras.
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Groups with good reduction

oG has good reduction at a discrete valuation v of K if

there exists a reductive group scheme § over valuation

ring O, C K, such that

e generic fiber §®p, K, is isomorphic to G ®g K.

@ The special fiber (reduction) G = §®o, K® is then
a connected simple group of same type as G

(where K@) is the residue field)
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Groups with good reduction (cont.)

o If G is K-split, then G has a good reduction at any ©
(follows from Chevalley’s construction).

@ G=SL;4 has good reduction at v if there exists an
Azumaya algebra A over O, such that

ARk Ky, ~ A®p, Ky
(in other words, A is unramified at v).

e G =Spin, (q) has good reduction at v if
g ~ AMmx3+ - +auxs) with A €KY, a; € OF

(assuming that char K@ +£2),
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e For meaningful results, one should specialize K, V and/or G.

e Most popular case: K field of fractions of Dedekind ring R,
and V consists of places associated with maximal ideals of R.

e This situation was first studied in detail by G. Harder
(Invent. math. 4(1967), 165-191)
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Basic case R = Z:
B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic
group over Q. Then G has good reduction at all primes p if
and only if G is split over all Q,.

Then nonsplit groups with good reduction can be constructed
explicitly and in some cases even classified.

Proposition

Let G be an absolutely almost simple simply connected algebraic
group over a number field K, and assume that V contains almost
all places of K. Then the number of K-forms of G that have
good reduction at all v eV is finite.
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Case R=k[x], K=k(x), and

V = {v,4 | p(x) €k[x] irreducible }.

Theorem (Raghunathan—Ramanathan, 1984)
Let k be a field of characteristic zero, and let Gy be a connected

reductive group over k. If G' is a K-form of Go®;K that has
good reduction at all veV then

G =Gj®rK
for some k-form Gj of Go.
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Case R =k[x,x'], K=k(x), and

V = {9y | p(x) € k[x] irreducible, # x }.

Theorem (Chernousov—Gille-Pianzola, 2012)

Let k be a field of characteristic zero, and let Gy be a connected
reductive group over k. Then K-forms of Go®;K that have good
reduction at all v €V are in bijection with H'(k((x)), Go).

This was used to prove conjugacy of Cartan subalgebras in

some infinite-dimensional Lie algebras.
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I will discuss our work on the higher-dimensional situation.

o Let K be a finitely generated field.

e Pick a regular affine model X =SpecA for K, where A
is a “nice” finitely generated Z-algebra.

o Let V be set of places associated with prime divisors on X

(divisorial set).

v
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This problem has close connections to:

e Study of simple algebraic groups having same isomor-
phism classes of maximal tori.

e Finiteness properties of unramified cohomology.
e Hasse principles for algebraic groups.
e Analysis of weakly commensurable Zariski-dense subgps

and applications to classical problems on locally
symmetric spaces (G.Prasad-A. Rapinchuk).
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The genus of a division algebra

Consider the following question:

(%) Let Dy and D, be finite-dimensional central division algebras
over a field K. How are Dy and D, related if they have

same maximal subfields?

eD; and D; have same maximal subfields if
o degD; =degD, =: n;

o for P/K of degree n, P— Dy & P < D
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Amitsur’'s Theorem

Theorem (Amitsur)

Let D; and D, be central division algebras over K.

If D; and D, have same splitting fields, ie. for F/K we
have

D; @k F ~ My, (F) < Dy ®kF =~ M,,(F),
then ([Di]) = ([D;]) in Br(K).

Proof of Amitsur’s Theorem uses generic splitting fields
(e.g. function fields of Severi-Brauer varieties), which are
infinite extensions of K.

What  happens if one allows only splitting fields of finite

degree, or just maximal subfields?
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e Amitsur’s Theorem is no longer true in this setting.

(Counterexamples can be found using cubic algebras over
number fields.)

So question (x) is non-trivial already over global fields.

(But, in this case, can be answered using Albert-Brauer-Hasse-Noether theorem.)

Question (G. Prasad-A. Rapinchuk)

Are quaternion algebras over K = Q(x) determined by their
maximal subfields?

e Yes — D. Saltman

e Same over K=k(x), k a number field

(S. Garibaldi - D. Saltman)
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The genus of a division algebra
Definition of the genus

Let K be a field, Br(K) its Brauer group.

Definition.

Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D'] € Br(K) | D' division algebra with same
maximal subfields as D}.

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by its maximal subfields.)

Question 2. When is gen(D) finite?
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The case of number fields

For K a number (or global) field:

@ |gen(D)| = 1 for any quaternion division algebra D/K;
@ gen(D) is finite for any division algebra D/K.

Both results rely on Albert- Brauer - Hasse - Noether Theorem:

The natural sequence

0 — Br(K) — @ Br(K,) =¥ Q/Z — 0,

veVK

is exact, where VX is the set of all valuations of K.



The genus of a division algebra

For quaternion algebras, we consider the 2-torsion:

0 — 2Br(K) — @B 2Br(K,).

veVK



The genus of a division algebra

For quaternion algebras, we consider the 2-torsion:

0 — 2Br(K) — @B 2Br(K,).

veVK

Locally, Br(K,) ~Z/2Z wunless K, =C.
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For quaternion algebras, we consider the 2-torsion:

0 — 2Br(K) — @B 2Br(K,).

veVK

Locally, Br(K,) ~Z/2Z wunless K, =C.

Thus, a quaternion algebra D/K is determined by (finite) set
of ramification places:

Ram(D) = {ve VK | D®kK, is a division algebra }.
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Number fields (cont.)

Consequently, proving |gen(D)| =1, reduces to showing that

Ram(D) is determined by information about maximal subfields.

This can be done using weak approximation in conjunction with

L=K(d) < D <« d¢K* forall veRam(D).
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Number fields (cont.)

Example. Consider quaternion division algebras
-1,3 -1,7
Dlz( Q > and D2:< 0 )

Ram(D;) = {2,3} and Ram(D;)=1{2,7}.

We have

= Ds ;ﬁDz.

Take L= Q(v/10). We have 10 ¢ Q;Z,Q;z = L < D,.
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Number fields (cont.)

Example. Consider quaternion division algebras
-1,3 -1,7
Dlz( Q > and D2:< 0 )

Ram(D;) = {2,3} and Ram(D;)=1{2,7}.

We have

= Dy ;ﬁDz.
Take L= Q(v/10). We have 10 ¢ Q;Z,Q;z = L < D,.

But 10 =1(mod3), so 10 € Q;Z and L ¢ Dj.
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Theorem 1 (Stability Theorem, C-R-R)

Let chark # 2. If |gen(D)| =1 for every quaternion algebra D over k,
then |gen(D')| =1 for any quaternion algebra D' over k(x).

e Stability holds for arbitrary division algebras of exponent 2.

e |gen(D)| >1 if D is not of exponent?2.

e gen(D) can be infinite: for any prime p, there exist
division algebras of degree p with infinite genus over certain

very LARGE fields (suggested by Rost, Wadsworth, Schacher...).
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Quaternion algebras with nontrivial genus: outline

Start with nonisomorphic quaternion division algebras
Ago) and AS))

over a field k(O of char #2, having a common quadratic

subfield.

ExamPLE: k(© =Q and

=) ()

There exists an extension K/k(® such that
D;=A"®,0K and D,=AV @K

are nonisomorphic division algebras with same quadratic subfields.
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The genus of a division algebra
Some further details

o If Ago) and Ago) have same maximal subfields, we are done.

e Otherwise, pick L; C AgO) such that L; % Ago).

e One finds
k1) = field of rational functions on a k(®-quadric
such that
L @0 KV = A @0 kO

but
Agl) = A§°) Qo kM) and Aﬁl) = Ag)) ko) K

remain nonisomorphic division algebras.

e One takes care of other quadratic subfields similarly.
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e This process generates a tower of extensions:
k(o) C k(l) C k(z) C -,
and we set K=k,

Note: In this construction, K is HUGE.

e Construction can be adapted to produce algebras of degree

p having infinite genus (]J.Meyer for p =2, S.Tikhonov for general p).
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Theorem 2. (Finiteness Theorem, C-R-R)

Let K be a finitely generated field. Then for any central
division K-algebra D the genus gen(D) is finite.

(finitely generated field = f.-g. extension of prime subfield)

Proofs of both theorems use analysis of ramification and

information about unramified Brauer group.
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Ramification

For a discrete valuation v of K, we set

Ky, — completion; O, C K, — valuation ring; K®) — residue field.

e Recall that a c.s.a. A over K (or its class [A] € Br(K))
is unramified at v if there exists Azumaya algebra A/QO,
such that

AQk Ky ~ A®p, Ky.

o If (n,charK(”)) =1 or KO is perfect, there is a residue map
ro: nBr(K) — HY(SW),Z/nZ),

where §( is absolute Galois group of K.

Then x € ,Br(K) is unramified at v < ry(x) =0. ]
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Ramification (cont.)

e Given a set V of discrete valuations of K, one defines

corresponding unramified Brauer group:

Br(K)y = {x € Br(K) | x unramified at all ve V }.

o If residue maps r, exist for all v €V, then we have

#Br(K)y = [ kerrs.

veV
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The genus of a division algebra

KEY FACT: Let v be a discrete wvaluation of K, and n be
prime to characteristic of residue field K.

If Dy and Dy are central division K-algebras of degree n having
same maximal subfields, then either both algebras are ramified

at v or both are unramified.

e To prove Finiteness Theorem, we show that a finitely
generated field K can be equipped with set V of discrete
valuations so that ,Br(K)y is finite.

olf D is of degree n with (n, charK) =1, then we have
|gen(D) | < [xBr(K)v | - ¢(n)’,
where r is number of v & V that ramify in D.

e Explicit estimates on size of genus available in certain cases.
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The genus of a division algebra

Question. Does there exist a quaternion division algebra D
over K = k(C), where C is a smooth geometrically integral

curve over a number field k, such that

|gen(D)| > 1?

e The answer is not known for any finitely generated K.

e One can construct examples where ,Br(K)y is “large.”
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Genus of a simple algebraic group

e To define the genus of an algebraic group, we replace
maximal subfields with maximal tori in the definition of

genus of division algebra.

elet G; and G, be semisimple groups over a field K.

We say: G; & G have same isomorphism classes of maximal
K-tori if every maximal K-torus T; of G; is K-isomorphic

to a maximal K-torus T, of G,, and vice versa.

elet G be an absolutely almost simple K-group.

gen, (G) =set of isomorphism classes of K-forms G’ of G having

same K-isomorphism classes of maximal K-tori as G.
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Genus of a simple algebraic group

Question 1. When does geny(G) reduce to a single element?

Question 2'. When is geny(G) finite?

Theorem 3 (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic

group over a number field K.

(1) geny (G) is finite;
@) If G is not of type An, Dopi1 or Es, then |geng(G)| =1.

Conjecture. (1) For K = k(x), k a number field, and G
an absolutely almost simple simply connected K-group with
|Z(G)| <2, we have |geng(G)| =1,

(2) If G is an absolutely almost simple group over a finitely
generated field K of “good” characteristic, then geng(G) is
finite.
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“Unramified division algebras” ~+ “groups with good reduction”

Theorem 4.
Let G be an absolutely almost simple simply connected group

over K, and v be a discrete valuation of K.

Assume that K® s finitely generated, and G has good

reduction at .

Then cvery G € geng(G) has good reduction at v, and

reduction G € geng ) (G?)).
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Genus of a simple algebraic group

Let K be a finitely generated field equipped with a set
V of discrete valuations such that:

() for any a € K*, set V(a):={ve V|v(a)#0} is finite;

(I) for every v €V, residue field K@ is finitely generated.

Let G be an absolutely almost simple simply connected K-group.

There exists a finite subset S CV (depending on G) such that
every G' € geny(G) has good reduction at all ve V\S.
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So, finiteness of gen,(G) is related to following property:

A set V of discrete valuations of K satisfies (®) for an

absolutely almost simple K-group G if

(@) set of K-isomorphism classes of (inner) K-forms G' of G
having good reduction at all v € V\S is finite, for any
finite SC V.

When can a finitely generated field K be equipped with V
that satisfies (®)? Does a divisorial V satisfy (®)?
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Genus of a simple algebraic group
Algebraic groups vs. division algebras

Additional challenges for arbitrary algebraic groups:

e It is not known how to classify forms by cohomological

invariants.

e Even when such description is available (e.g. for type G»),
one needs to prove finiteness of unramified cohomology

in degrees >2, which is a difficult problem.
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Inner forms of type A

o Finiteness results for unramified Brauer groups imply that
divisorial V does satisfy (®) for inner forms of type A,_;

for any finitely generated K such that charK { n.

Theorem 5.
(1) Let D be a central division algebra of exponent 2 over

K = k(x1,...,x,) where k is a number field or a finite
field of characteristic # 2. Then for G =SL,p (m > 1),
we have |geny (G)| = 1.

(2) Let G =SLy,p, where D is a central division algebra over
a finitely generated field K. Then geng(G) is finite.
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Spinor groups

Let C be a smooth geometrically integral curve over a number

field 'k, K=k(C), and V divisorial set of places. Fix n > 5.

Then set of K-isomorphism classes of Spin,(q)

with  good
reduction at all veV s (finite.

Let K = k(C), where C is a smooth geometrically integral curve
over a number field k, and set G = Spin,(q).

If either n>5 is
odd, or n>10 is even and q is isotropic, then gen,(G) is finite.
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Genus of a simple algebraic group
Some other results on good reduction and genus

e Similar results for groups of type G, over K =k(C) having
good reduction, with C a smooth geometrically integral curve

over a number field k.

Theorem 8

Let G be a simple algebraic group of type G,.

(1) If K=k(x), where k is a number field, then |geny(G)| =1,

(@ If K=k(x1,...,x,) or k(C), where k is a number field,
then geny(G) is finite.




Theorem 6 and unramified cohomology

@ Theorem 6 and unramified cohomology



Theorem 6.
Let C be a smooth geometrically integral curve over a number

field 'k, K=k(C), and V divisorial set of places. Fix n > 5.

Then set of K-isomorphism classes of Spin,(q)

with  good
reduction at all veV s (finite.




Let C be a smooth geometrically integral curve over a number
field 'k, K=k(C), and V divisorial set of places. Fix n > 5.
Then set of K-isomorphism classes of Spin,(q)

with  good
reduction at all veV s (finite.

PROOF consists of two main parts:



Let C be a smooth geometrically integral curve over a number
field 'k, K=k(C), and V divisorial set of places. Fix n > 5.
Then set of K-isomorphism classes of Spin,(q)

with  good
reduction at all veV s (finite.

PROOF consists of two main parts:

e Using Milnor’s conjecture, we reduce the argument to

finiteness of unramified cohomology Hi(K, H2)y, for i>1,
where pp = {£1}.



Let C be a smooth geometrically integral curve over a number
field 'k, K=k(C), and V divisorial set of places. Fix n > 5.
Then set of K-isomorphism classes of Spin,(q)

with  good
reduction at all veV s (finite.

PROOF consists of two main parts:

e Using Milnor’s conjecture, we reduce the argument to

finiteness of unramified cohomology Hi(K, H2)y, for i>1,
where pp = {£1}.

o We establish finiteness of H'(K, u2)y for all i>1.



Let C be a smooth geometrically integral curve over a number
field 'k, K=k(C), and V divisorial set of places. Fix n > 5.
Then set of K-isomorphism classes of Spin,(q)

with  good
reduction at all veV s (finite.

PROOF consists of two main parts:

e Using Milnor’s conjecture, we reduce the argument to

finiteness of unramified cohomology Hi(K, H2)y, for i>1,
where pp = {£1}.

o We establish finiteness of H'(K, u2)y for all i>1.
Key case: i = 3.



Let C be a smooth geometrically integral curve over a number
field 'k, K=k(C), and V divisorial set of places. Fix n >5.
Then set of K-isomorphism classes of Spin,(q)

with  good
reduction at all veV s (finite.

PROOF consists of two main parts:

e Using Milnor’s conjecture, we reduce the argument to

finiteness of unramified cohomology Hi(K, H2)y, for i>1,
where pp = {£1}.

o We establish finiteness of H'(K, u2)y for all i>1.

Key case: i =3. Involves Kato’s and Jannsen’s results on
cohomological Hasse principle for H°.
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Theorem 6 and unramified cohomology
Main definitions

There exist residue maps
s HI(K, i) = HIZL(KE), i 07)

for all i>1, all j, whenever (n, char K(U)) =1.

Define ith unramified cohomology of K w.urt. V by

H(K, y,?j)v =N ker ..
veV

We consider set V of discrete valuations of K satisfying
(I) for any a € K*, set V(a):={ve V|v(a) #0} is finite.

For such V, we define Picard group Pic(V) = Div(V)/P(V),
Div(V) = free abelian group on v €V,
P(V) = subgp of “principal divisors” Y ov(a)v, a € K*.

veV
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Theorem 6 and unramified cohomology

Good reduction and unramified cohomology

Theorem 9
Consider a field K equipped with set V of discrete valuations

satisfying (I) such that (charK®),2) =1 for all v V. Let
n >5. Assume that

@ Pic(V)/2- Pic(V) is finite;
@ H(K,pp)y are finite for all i=1,...,0:= [log,n] + 1.
Then set of K-isom. classes of spinor groups G = Spin,(q) of

nondeg. quadratic forms q over K in n wvariables having good

reduction at all ve€ 'V is finite, of size at most

4
|Pic(V) /2 - Pic(V)] ]1 |H (K, t2)v|.
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Set-up: Global-to-local map in Galois cohomology

Let

e K be a field
o V a set of discrete valuations of K
e G an algebraic group over K.

One says that the Hasse principle holds if global-to-local map
Oc,v: H(K,G) = [ [ H' (Ko, G)

veV
is injective.

Kernel of 6gy is called Tate-Shafarevich set
III(G, V) := kerfg,y.
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Connections to Hasse principles
Hasse principle over number fields

Let k = number field, V = set of all places of k.

o If G is simply-connected or adjoint alg. K-group, then

Oc,v: H'(k,G) — [ H' (ko, G)

veV
is injective (i.e. Hasse principle holds).

e For any alg. k-group G, the map 6y is proper; in
particular, III(G,V) is finite.

We show that global-to-local map is proper for groups over

K=k(C) in certain situations.
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Connections to Hasse principles

Properness of 0 v for special orthogonal groups

Let C be a smooth geometrically integral curve over a number
field k, K=k(C), and V divisorial set of places. Fix n > 5.
Then for G = SOy(q), the map

Oc,v: H(K,G) = [[ H' (Ko, G)

veV
is proper.

Key steps of the argument:
e Using Milnor’s conjecture, reduce proof to finiteness of

O; = ker (Hi(K, 1) — HHi(er Vz))

veV
for all i >1.

o Clearly, O; C H(K,p2)y, which is finite.
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Connections to Hasse principles
Further results and a conjecture

For K=k(C) and V = divisorial set of valuations, we also
establish properness of 60gy for:

e G of type G

e G=SU,(L/K,h), L/K quadratic extension, & nondegenerate
hermitian form of dim > 2

@ G=SL14, A a cs.a/K of square-free degree.

Conjecture.

Let C be a smooth geometrically integral curve over a number
field k, K=k(C), and V divisorial set of places.

Then for any absolutely almost simple alg. group G over K,
Oc,v: H'(K,G) = [[ H' (Ko, G)

veV
is proper.
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Connections to Hasse principles
Results over some other classes of fields

Finiteness results also hold for:

o K=TF,(S), with F, a finite field of char. #2, S/F,
smooth geom. integral surface, and V a divisorial set of
places

(fields k(C) and IF,(S) are 2-dimensional global fields in Kato’s
terminlogy)

e K=F(C), with F a field of char. #2 s.t.

(F,) For every finite separable extension L/F, the quotient
L*/L*? is finite,

C/F a smooth geom. integral curve, and V set of
geometric places (corresponding to closed points of C).
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