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Introduction

A K-group G′ is a K-form (or K/K-form) of G if
G′ ⊗K K ' G ⊗K K (where K is a sep. closure of K).

Examples.

1. If A is a central simple algebra of degree n over K,
then G′ = SL1,A is a K-form of G = SLn.

2. If q is a nondegenerate quadratic form in n variables over
K (char K 6= 2) and

G = Spinn(q),

then for any other nondegenerate quadratic form q′ in n
variables,

G′ = Spinn(q
′)

is a K-form of G.

If n is odd, then these are all K-forms.

Otherwise, there may be K-forms coming from hermitian forms
over noncommutative division algebras.
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Groups with good reduction

• G has good reduction at a discrete valuation v of K

if

there exists a reductive group scheme G over valuation

ring Ov ⊂ Kv such that

generic fiber G⊗Ov Kv is isomorphic to G⊗K Kv.

The special fiber (reduction) G(v) = G⊗Ov K(v) is then

a connected simple group of same type as G

(where K(v) is the residue field)
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Groups with good reduction (cont.)

Examples.

If G is K-split, then G has a good reduction at any v
(follows from Chevalley’s construction).

G = SL1,A has good reduction at v if there exists an
Azumaya algebra A over Ov such that

A⊗K Kv ' A⊗Ov Kv

(in other words, A is unramified at v).

G = Spinn(q) has good reduction at v if

q ∼ λ(a1x2
1 + · · ·+ anx2

n) with λ ∈ K×v , ai ∈ O×v
(assuming that char K(v) 6= 2).
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• For meaningful results, one should specialize K, V and/or G.

•Most popular case: K field of fractions of Dedekind ring R,
and V consists of places associated with maximal ideals of R.

• This situation was first studied in detail by G. Harder
(Invent. math. 4(1967), 165-191)
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Introduction

Basic case R = Z:
B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic
group over Q. Then G has good reduction at all primes p if
and only if G is split over all Qp.

Then nonsplit groups with good reduction can be constructed
explicitly and in some cases even classified.

Proposition

Let G be an absolutely almost simple simply connected algebraic

group over a number field K, and assume that V contains almost

all places of K. Then the number of K-forms of G that have
good reduction at all v ∈ V is finite.
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Case R = k[x], K = k(x), and

V = { vp(x) | p(x) ∈ k[x] irreducible }.

Theorem (Raghunathan–Ramanathan, 1984)

Let k be a field of characteristic zero, and let G0 be a connected

reductive group over k. If G′ is a K-form of G0 ⊗k K that has

good reduction at all v ∈ V then

G′ = G′0 ⊗k K

for some k-form G′0 of G0.
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Case R = k[x, x−1], K = k(x), and

V = { vp(x) | p(x) ∈ k[x] irreducible, 6= x }.

Theorem (Chernousov–Gille–Pianzola, 2012)

Let k be a field of characteristic zero, and let G0 be a connected

reductive group over k. Then K-forms of G0 ⊗k K that have good

reduction at all v ∈ V are in bijection with H1(k((x)) , G0).

This was used to prove conjugacy of Cartan subalgebras in

some infinite-dimensional Lie algebras.
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is a “nice” finitely generated Z-algebra.

Let V be set of places associated with prime divisors on X
(divisorial set).
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and applications to classical problems on locally
symmetric spaces (G. Prasad-A. Rapinchuk).
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The genus of a division algebra

Consider the following question:

(∗) Let D1 and D2 be finite-dimensional central division algebras

over a field K. How are D1 and D2 related if they have

same maximal subfields?

• D1 and D2 have same maximal subfields if

deg D1 = deg D2 =: n;

for P/K of degree n, P ↪→ D1 ⇔ P ↪→ D2.
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The genus of a division algebra

Amitsur’s Theorem

Theorem (Amitsur)

Let D1 and D2 be central division algebras over K.

If D1 and D2 have same splitting fields, i.e. for F/K we
have

D1 ⊗K F ' Mn1(F) ⇔ D2 ⊗K F ' Mn2(F),

then 〈[D1]〉 = 〈[D2]〉 in Br(K).

Proof of Amitsur’s Theorem uses generic splitting fields
(e.g. function fields of Severi-Brauer varieties),

which are
infinite extensions of K.

What happens if one allows only splitting fields of finite

degree, or just maximal subfields?



The genus of a division algebra

Amitsur’s Theorem

Theorem (Amitsur)

Let D1 and D2 be central division algebras over K.
If D1 and D2 have same splitting fields, i.e. for F/K we
have

D1 ⊗K F ' Mn1(F) ⇔ D2 ⊗K F ' Mn2(F),

then 〈[D1]〉 = 〈[D2]〉 in Br(K).

Proof of Amitsur’s Theorem uses generic splitting fields
(e.g. function fields of Severi-Brauer varieties),

which are
infinite extensions of K.

What happens if one allows only splitting fields of finite

degree, or just maximal subfields?



The genus of a division algebra

Amitsur’s Theorem

Theorem (Amitsur)

Let D1 and D2 be central division algebras over K.
If D1 and D2 have same splitting fields, i.e. for F/K we
have

D1 ⊗K F ' Mn1(F) ⇔ D2 ⊗K F ' Mn2(F),

then 〈[D1]〉 = 〈[D2]〉 in Br(K).

Proof of Amitsur’s Theorem uses generic splitting fields
(e.g. function fields of Severi-Brauer varieties),

which are
infinite extensions of K.

What happens if one allows only splitting fields of finite

degree, or just maximal subfields?



The genus of a division algebra

Amitsur’s Theorem

Theorem (Amitsur)

Let D1 and D2 be central division algebras over K.
If D1 and D2 have same splitting fields, i.e. for F/K we
have

D1 ⊗K F ' Mn1(F) ⇔ D2 ⊗K F ' Mn2(F),

then 〈[D1]〉 = 〈[D2]〉 in Br(K).

Proof of Amitsur’s Theorem uses generic splitting fields
(e.g. function fields of Severi-Brauer varieties),

which are
infinite extensions of K.

What happens if one allows only splitting fields of finite

degree, or just maximal subfields?



The genus of a division algebra

Amitsur’s Theorem

Theorem (Amitsur)

Let D1 and D2 be central division algebras over K.
If D1 and D2 have same splitting fields, i.e. for F/K we
have

D1 ⊗K F ' Mn1(F) ⇔ D2 ⊗K F ' Mn2(F),

then 〈[D1]〉 = 〈[D2]〉 in Br(K).

Proof of Amitsur’s Theorem uses generic splitting fields
(e.g. function fields of Severi-Brauer varieties), which are
infinite extensions of K.

What happens if one allows only splitting fields of finite

degree, or just maximal subfields?



The genus of a division algebra

Amitsur’s Theorem

Theorem (Amitsur)

Let D1 and D2 be central division algebras over K.
If D1 and D2 have same splitting fields, i.e. for F/K we
have

D1 ⊗K F ' Mn1(F) ⇔ D2 ⊗K F ' Mn2(F),

then 〈[D1]〉 = 〈[D2]〉 in Br(K).

Proof of Amitsur’s Theorem uses generic splitting fields
(e.g. function fields of Severi-Brauer varieties), which are
infinite extensions of K.

What happens if one allows only splitting fields of finite

degree, or just maximal subfields?



The genus of a division algebra

• Amitsur’s Theorem is no longer true in this setting.

(Counterexamples can be found using cubic algebras over
number fields.)

So question (∗) is non-trivial already over global fields.

(But, in this case, can be answered using Albert-Brauer-Hasse-Noether theorem.)

Question (G. Prasad-A. Rapinchuk)

Are quaternion algebras over K = Q(x) determined by their
maximal subfields?

• Yes – D. Saltman

• Same over K = k(x), k a number field

(S. Garibaldi - D. Saltman)
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The genus of a division algebra

Definition of the genus

Let K be a field, Br(K) its Brauer group.

Definition.
Let D be a finite-dimensional central division algebra over K.

The genus of D is

gen(D) = { [D′] ∈ Br(K) | D′ division algebra with same
maximal subfields as D}.

Question 1. When does gen(D) reduce to a single element?

(This means that D is uniquely determined by its maximal subfields.)

Question 2. When is gen(D) finite?
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The genus of a division algebra

The case of number fields

For K a number (or global) field:

1 |gen(D)| = 1 for any quaternion division algebra D/K;

2 gen(D) is finite for any division algebra D/K.

Both results rely on Albert - Brauer - Hasse - Noether Theorem:

The natural sequence

0 −→ Br(K) −→
⊕

v∈VK

Br(Kv)
∑ invv−→ Q/Z→ 0,

is exact, where VK is the set of all valuations of K.
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The genus of a division algebra

For quaternion algebras, we consider the 2-torsion:

0 −→ 2Br(K) −→
⊕

v∈VK

2Br(Kv).

Locally, 2Br(Kv) ' Z/2Z unless Kv = C.

Thus, a quaternion algebra D/K is determined by (finite) set
of ramification places:

Ram(D) = { v ∈ VK | D⊗K Kv is a division algebra }.
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The genus of a division algebra

Number fields (cont.)

Consequently, proving |gen(D)| = 1, reduces to showing that

Ram(D) is determined by information about maximal subfields.

This can be done using weak approximation in conjunction with

L = K(
√

d) ↪→ D ⇔ d /∈ K×v
2 for all v ∈ Ram(D).
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Number fields (cont.)

Example. Consider quaternion division algebras

D1 =

(
−1 , 3

Q

)
and D2 =

(
−1 , 7

Q

)
.

We have

Ram(D1) = {2 , 3} and Ram(D2) = {2 , 7}.

⇒ D1 6' D2.

Take L = Q(
√

10). We have 10 /∈ Q×2
2 , Q×7

2 ⇒ L ↪→ D2.

But 10 ≡ 1(mod 3), so 10 ∈ Q×3
2 and L 6↪→ D1.
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The genus of a division algebra

Theorem 1 (Stability Theorem, C-R-R)

Let char k 6= 2. If |gen(D)| = 1 for every quaternion algebra D over k,

then |gen(D′)| = 1 for any quaternion algebra D′ over k(x).

• Stability holds for arbitrary division algebras of exponent 2.

• |gen(D)| > 1 if D is not of exponent 2.

• gen(D) can be infinite:

for any prime p, there exist

division algebras of degree p with infinite genus over certain

very LARGE fields (suggested by Rost, Wadsworth, Schacher...).
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The genus of a division algebra

Quaternion algebras with nontrivial genus: outline

Start with nonisomorphic quaternion division algebras

∆(0)
1 and ∆(0)

2

over a field k(0) of char 6= 2, having a common quadratic
subfield.

EXAMPLE: k(0) = Q and

∆(0)
1 =

(
−1 , 3

Q

)
, ∆(0)

2 =
(
−1 , 7

Q

)
.

There exists an extension K/k(0) such that

D1 = ∆(0)
1 ⊗k(0) K and D2 = ∆(0)

2 ⊗k(0) K

are nonisomorphic division algebras with same quadratic subfields.



The genus of a division algebra

Quaternion algebras with nontrivial genus: outline

Start with nonisomorphic quaternion division algebras

∆(0)
1 and ∆(0)

2

over a field k(0) of char 6= 2, having a common quadratic
subfield.

EXAMPLE: k(0) = Q and

∆(0)
1 =

(
−1 , 3

Q

)
, ∆(0)

2 =
(
−1 , 7

Q

)
.

There exists an extension K/k(0) such that

D1 = ∆(0)
1 ⊗k(0) K and D2 = ∆(0)

2 ⊗k(0) K

are nonisomorphic division algebras with same quadratic subfields.



The genus of a division algebra

Quaternion algebras with nontrivial genus: outline

Start with nonisomorphic quaternion division algebras

∆(0)
1 and ∆(0)

2

over a field k(0) of char 6= 2, having a common quadratic
subfield.

EXAMPLE: k(0) = Q and

∆(0)
1 =

(
−1 , 3

Q

)
, ∆(0)

2 =
(
−1 , 7

Q

)
.

There exists an extension K/k(0) such that

D1 = ∆(0)
1 ⊗k(0) K and D2 = ∆(0)

2 ⊗k(0) K

are nonisomorphic division algebras with same quadratic subfields.



The genus of a division algebra

Some further details

• If ∆(0)
1 and ∆(0)

2 have same maximal subfields, we are done.

• Otherwise, pick L1 ⊂ ∆(0)
1 such that L1 6↪→ ∆(0)

2 .

• One finds

k(1) = field of rational functions on a k(0)-quadric

such that

L1 ⊗k(0) k(1) ↪→ ∆(0)
2 ⊗k(0) k(1)

but
∆(1)

1 := ∆(0)
1 ⊗k(0) k(1) and ∆(1)

2 = ∆(0)
2 ⊗k(0) k(1)

remain nonisomorphic division algebras.

• One takes care of other quadratic subfields similarly.
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The genus of a division algebra

• This process generates a tower of extensions:

k(0) ⊂ k(1) ⊂ k(2) ⊂ · · · ,

and we set K =
⋃

k(i).

Note: In this construction, K is HUGE.

• Construction can be adapted to produce algebras of degree

p having infinite genus ( J. Meyer for p = 2, S. Tikhonov for general p).
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The genus of a division algebra

Theorem 2. (Finiteness Theorem, C-R-R)

Let K be a finitely generated field. Then for any central

division K-algebra D the genus gen(D) is finite.

(finitely generated field = f.-g. extension of prime subfield)

Proofs of both theorems use analysis of ramification and

information about unramified Brauer group.
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The genus of a division algebra

Ramification

For a discrete valuation v of K, we set

Kv — completion; Ov ⊂ Kv — valuation ring; K(v) — residue field.

• Recall that a c. s. a. A over K (or its class [A] ∈ Br(K))

is unramified at v if

there exists Azumaya algebra A/Ov

such that

A⊗K Kv ' A⊗Ov Kv.

• If (n , char K(v)) = 1 or K(v) is perfect, there is a residue map

rv : nBr(K) −→ H1(G(v), Z/nZ),

where G(v) is absolute Galois group of K(v).

Then x ∈ nBr(K) is unramified at v ⇔ rv(x) = 0.
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Ramification (cont.)

• Given a set V of discrete valuations of K, one defines

corresponding unramified Brauer group:

Br(K)V = { x ∈ Br(K) | x unramified at all v ∈ V }.

• If residue maps rv exist for all v ∈ V, then we have

nBr(K)V =
⋂

v∈V

ker rv.
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The genus of a division algebra

KEY FACT: Let v be a discrete valuation of K, and n be

prime to characteristic of residue field K(v).

If D1 and D2 are central division K-algebras of degree n having

same maximal subfields, then either both algebras are ramified

at v or both are unramified.

• To prove Finiteness Theorem, we show that a finitely
generated field K can be equipped with set V of discrete
valuations so that nBr(K)V is finite.

• If D is of degree n with (n , char K) = 1, then we have

| gen(D) | 6 | nBr(K)V | · ϕ(n)r,

where r is number of v ∈ V that ramify in D.

• Explicit estimates on size of genus available in certain cases.
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The genus of a division algebra

Question. Does there exist a quaternion division algebra D

over K = k(C), where C is a smooth geometrically integral

curve over a number field k, such that

|gen(D)| > 1?

• The answer is not known for any finitely generated K.

• One can construct examples where 2Br(K)V is “large.”
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Genus of a simple algebraic group

• To define the genus of an algebraic group, we replace

maximal subfields with maximal tori in the definition of

genus of division algebra.

• Let G1 and G2 be semisimple groups over a field K.

We say: G1 & G2 have same isomorphism classes of maximal

K-tori if every maximal K-torus T1 of G1 is K-isomorphic

to a maximal K-torus T2 of G2, and vice versa.

• Let G be an absolutely almost simple K-group.

genK(G) = set of isomorphism classes of K-forms G′ of G having
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Question 1′. When does genK(G) reduce to a single element?

Question 2′. When is genK(G) finite?

Theorem 3 (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic

group over a number field K.

(1) genK(G) is finite;

(2) If G is not of type An, D2n+1 or E6, then |genK(G)| = 1.

Conjecture. (1) For K = k(x), k a number field, and G
an absolutely almost simple simply connected K-group with
|Z(G)| 6 2, we have |genK(G)| = 1;

(2) If G is an absolutely almost simple group over a finitely
generated field K of “good” characteristic, then genK(G) is
finite.
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“Unramified division algebras”  “groups with good reduction”

Theorem 4.

Let G be an absolutely almost simple simply connected group

over K, and v be a discrete valuation of K.

Assume that K(v) is finitely generated, and G has good

reduction at v.

Then every G′ ∈ genK(G) has good reduction at v, and

reduction G′(v) ∈ genK(v)(G(v)).
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Genus of a simple algebraic group

Let K be a finitely generated field equipped with a set
V of discrete valuations such that:

(I) for any a ∈ K×, set V(a) := {v ∈ V | v(a) 6= 0} is finite;

(II) for every v ∈ V, residue field K(v) is finitely generated.

Corollary.

Let G be an absolutely almost simple simply connected K-group.

There exists a finite subset S ⊂ V (depending on G) such that

every G′ ∈ genK(G) has good reduction at all v ∈ V \ S.
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Genus of a simple algebraic group

So, finiteness of genK(G) is related to following property:

A set V of discrete valuations of K satisfies (Φ) for an
absolutely almost simple K-group G if

(Φ) set of K-isomorphism classes of (inner) K-forms G′ of G

having good reduction at all v ∈ V \ S is finite, for any

finite S ⊂ V.

Question.
When can a finitely generated field K be equipped with V

that satisfies (Φ)?

Does a divisorial V satisfy (Φ)?
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Genus of a simple algebraic group

Algebraic groups vs. division algebras

Additional challenges for arbitrary algebraic groups:

It is not known how to classify forms by cohomological

invariants.

Even when such description is available (e.g. for type G2),

one needs to prove finiteness of unramified cohomology

in degrees > 2, which is a difficult problem.
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Inner forms of type A

• Finiteness results for unramified Brauer groups imply that

divisorial V does satisfy (Φ) for inner forms of type An−1

for any finitely generated K such that char K - n.

Theorem 5.
(1) Let D be a central division algebra of exponent 2 over

K = k(x1, . . . , xr) where k is a number field or a finite

field of characteristic 6= 2. Then for G = SLm,D (m > 1),

we have |genK(G)| = 1.

(2) Let G = SLm,D, where D is a central division algebra over

a finitely generated field K. Then genK(G) is finite.
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Spinor groups

Theorem 6.
Let C be a smooth geometrically integral curve over a number

field k, K = k(C), and V divisorial set of places. Fix n > 5.

Then set of K-isomorphism classes of Spinn(q) with good

reduction at all v ∈ V is finite.

Theorem 7.
Let K = k(C), where C is a smooth geometrically integral curve

over a number field k, and set G = Spinn(q).

If either n > 5 is

odd, or n > 10 is even and q is isotropic, then genK(G) is finite.
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Some other results on good reduction and genus

• Similar results for groups of type G2 over K = k(C) having

good reduction, with C a smooth geometrically integral curve

over a number field k.

Theorem 8

Let G be a simple algebraic group of type G2.

(1) If K = k(x), where k is a number field, then |genK(G)| = 1;

(2) If K = k(x1, . . . , xr) or k(C), where k is a number field,

then genK(G) is finite.
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Theorem 6.
Let C be a smooth geometrically integral curve over a number

field k, K = k(C), and V divisorial set of places. Fix n > 5.

Then set of K-isomorphism classes of Spinn(q) with good

reduction at all v ∈ V is finite.

PROOF consists of two main parts:

Using Milnor’s conjecture, we reduce the argument to
finiteness of unramified cohomology Hi(K, µ2)V, for i > 1,
where µ2 = {±1}.

We establish finiteness of Hi(K, µ2)V for all i > 1.

Key case: i = 3. Involves Kato’s and Jannsen’s results on
cohomological Hasse principle for H3.
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Theorem 6 and unramified cohomology

Main definitions

There exist residue maps

ri
v : Hi(K, µ

⊗j
n )→ Hi−1(K(v), µ

⊗(j−1)
n )

for all i > 1, all j, whenever (n, char K(v)) = 1.

Define ith unramified cohomology of K w.r.t. V by

Hi(K, µ
⊗j
n )V =

⋂
v∈V

ker ri
v.

We consider set V of discrete valuations of K satisfying

(I) for any a ∈ K×, set V(a) := {v ∈ V | v(a) 6= 0} is finite.

For such V, we define Picard group Pic(V) = Div(V)/P(V),

Div(V) = free abelian group on v ∈ V,
P(V) = subgp of “principal divisors” ∑

v∈V
v(a)v, a ∈ K×.
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⋂
v∈V

ker ri
v.

We consider set V of discrete valuations of K satisfying
(I) for any a ∈ K×, set V(a) := {v ∈ V | v(a) 6= 0} is finite.

For such V, we define Picard group Pic(V) = Div(V)/P(V),

Div(V) = free abelian group on v ∈ V,
P(V) = subgp of “principal divisors” ∑

v∈V
v(a)v, a ∈ K×.
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Theorem 6 and unramified cohomology

Good reduction and unramified cohomology

Theorem 9

Consider a field K equipped with set V of discrete valuations

satisfying (I) such that (char K(v), 2) = 1 for all v ∈ V. Let

n > 5.

Assume that

1 Pic(V)/2 · Pic(V) is finite;

2 Hi(K, µ2)V are finite for all i = 1, . . . , ` := [log2 n] + 1.

Then set of K-isom. classes of spinor groups G = Spinn(q) of

nondeg. quadratic forms q over K in n variables having good

reduction at all v ∈ V is finite,

of size at most

|Pic(V)/2 · Pic(V)| ·
`

∏
i=1
|Hi(K, µ2)V|.
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Connections to Hasse principles

Set-up: Global-to-local map in Galois cohomology

Let

K be a field
V a set of discrete valuations of K
G an algebraic group over K.

One says that the Hasse principle holds if global-to-local map

θG,V : H1(K, G)→ ∏
v∈V

H1(Kv, G)

is injective.

Kernel of θG,V is called Tate-Shafarevich set
X(G, V) := ker θG,V.
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Connections to Hasse principles

Hasse principle over number fields

Let k = number field, V = set of all places of k.

If G is simply-connected or adjoint alg. K-group, then

θG,V : H1(k, G)→ ∏
v∈V

H1(kv, G)

is injective (i.e. Hasse principle holds).

For any alg. k-group G, the map θG,V is proper; in

particular, X(G, V) is finite.

We show that global-to-local map is proper for groups over

K = k(C) in certain situations.
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Connections to Hasse principles

Properness of θG,V for special orthogonal groups

Theorem 10

Let C be a smooth geometrically integral curve over a number
field k, K = k(C), and V divisorial set of places. Fix n > 5.

Then for G = SOn(q), the map

θG,V : H1(K, G)→ ∏
v∈V

H1(Kv, G)

is proper.

Key steps of the argument:

Using Milnor’s conjecture, reduce proof to finiteness of

Ωi = ker

(
Hi(K, µ2)→ ∏

v∈V
Hi(Kv, µ2)

)
for all i > 1.

Clearly, Ωi ⊂ Hi(K, µ2)V, which is finite.
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Connections to Hasse principles

Further results and a conjecture

For K = k(C) and V = divisorial set of valuations, we also
establish properness of θG,V for:

G of type G2

G = SUn(L/K, h), L/K quadratic extension, h nondegenerate
hermitian form of dim > 2

G = SL1,A, A a c.s.a/K of square-free degree.

Conjecture.

Let C be a smooth geometrically integral curve over a number
field k, K = k(C), and V divisorial set of places.

Then for any absolutely almost simple alg. group G over K,

θG,V : H1(K, G)→ ∏
v∈V

H1(Kv, G)

is proper.
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Connections to Hasse principles

Results over some other classes of fields

Finiteness results also hold for:

K = Fq(S), with Fq a finite field of char. 6= 2, S/Fq
smooth geom. integral surface, and V a divisorial set of
places

(fields k(C) and Fq(S) are 2-dimensional global fields in Kato’s
terminlogy)

K = F(C), with F a field of char. 6= 2 s.t.

(F′2) For every finite separable extension L/F, the quotient
L×/L×2 is finite,

C/F a smooth geom. integral curve, and V set of
geometric places (corresponding to closed points of C).
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