ALGEBRAIC GROUPS WITH GOOD REDUCTION AND UNRAMIFIED COHOMOLOGY

Igor Rapinchuk

Michigan State University

(joint work with V. Chernousov and A. Rapinchuk)

Seattle November 2018

- Introduction
- 2 The genus of a division algebra
- Genus of a simple algebraic group
- 4 Theorem 6 and unramified cohomology
- 5 Connections to Hasse principles

- *K* be a field equipped with a set *V* of discrete valuations;
- G an absolutely almost simple algebraic K-group

- *K* be a field equipped with a set *V* of discrete valuations;
- G an absolutely almost simple algebraic K-group

- *K* be a field equipped with a set *V* of discrete valuations;
- *G* an absolutely almost simple algebraic *K*-group (typically simply connected or adjoint)

- K be a field equipped with a set V of discrete valuations;
- *G* an absolutely almost simple algebraic *K*-group (typically simply connected or adjoint)

We are interested in analyzing

K-forms of *G* that have good reduction at all $v \in V$.

Examples.

1. If A is a central simple algebra of degree n over K, then $G' = \operatorname{SL}_{1,A}$ is a K-form of $G = \operatorname{SL}_n$.

Examples.

- 1. If A is a central simple algebra of degree n over K, then $G' = \operatorname{SL}_{1,A}$ is a K-form of $G = \operatorname{SL}_n$.
- 2. If q is a nondegenerate quadratic form in n variables over K (char $K \neq 2$) and

$$G = \operatorname{Spin}_n(q),$$

Examples.

- 1. If *A* is a central simple algebra of degree *n* over *K*, then $G' = SL_{1,A}$ is a *K*-form of $G = SL_n$.
- 2. If q is a nondegenerate quadratic form in n variables over K (char $K \neq 2$) and

$$G = \operatorname{Spin}_n(q),$$

then for any other nondegenerate quadratic form q' in n variables,

$$G' = \operatorname{Spin}_n(q')$$

is a *K*-form of *G*.

Examples.

- 1. If *A* is a central simple algebra of degree *n* over *K*, then $G' = SL_{1,A}$ is a *K*-form of $G = SL_n$.
- 2. If q is a nondegenerate quadratic form in n variables over K (char $K \neq 2$) and

$$G = \operatorname{Spin}_n(q),$$

then for any other nondegenerate quadratic form q' in n variables,

$$G' = \operatorname{Spin}_{n}(q')$$

is a K-form of G.

If n is odd, then these are **all** K-forms.

Examples.

- 1. If A is a central simple algebra of degree n over K, then $G' = \operatorname{SL}_{1,A}$ is a K-form of $G = \operatorname{SL}_n$.
- 2. If q is a nondegenerate quadratic form in n variables over K (char $K \neq 2$) and

$$G = \operatorname{Spin}_n(q),$$

then for any other nondegenerate quadratic form q' in n variables,

$$G' = \operatorname{Spin}_n(q')$$

is a K-form of G.

If n is odd, then these are all K-forms.

Otherwise, there may be *K*-forms coming from hermitian forms over noncommutative division algebras.

ullet G has good reduction at a discrete valuation v of K

- generic fiber $\mathcal{G} \otimes_{\mathcal{O}_v} K_v$ is isomorphic to $G \otimes_K K_v$.
- The special fiber (reduction) $\underline{G}^{(v)} = 9 \otimes_{\mathcal{O}_v} K^{(v)}$ is then a connected simple group of same type as G (where $K^{(v)}$ is the residue field)

- G has *good reduction* at a discrete valuation v of K if there exists a reductive group scheme G over valuation ring $\mathcal{O}_v \subset K_v$ such that
 - generic fiber $\mathcal{G} \otimes_{\mathcal{O}_v} K_v$ is isomorphic to $G \otimes_K K_v$.
 - The special fiber (reduction) $\underline{G}^{(v)} = 9 \otimes_{\mathcal{O}_v} K^{(v)}$ is then a connected simple group of same type as G (where $K^{(v)}$ is the residue field)

- G has *good reduction* at a discrete valuation v of K if there exists a reductive group scheme G over valuation ring $\mathcal{O}_v \subset K_v$ such that
 - generic fiber $9 \otimes_{\mathcal{O}_v} K_v$ is isomorphic to $G \otimes_K K_v$.
 - The special fiber (reduction) $\underline{G}^{(v)} = 9 \otimes_{\mathcal{O}_v} K^{(v)}$ is then a connected simple group of same type as G (where $K^{(v)}$ is the residue field)

- G has *good reduction* at a discrete valuation v of K if there exists a reductive group scheme G over valuation ring $\mathcal{O}_v \subset K_v$ such that
 - generic fiber $\mathfrak{G} \otimes_{\mathcal{O}_v} K_v$ is isomorphic to $G \otimes_K K_v$.
 - The special fiber (reduction) $\underline{G}^{(v)} = \mathcal{G} \otimes_{\mathcal{O}_v} K^{(v)}$ is then a connected simple group of same type as G (where $K^{(v)}$ is the residue field)

Groups with good reduction (cont.)

Examples.

- If *G* is *K*-split, then *G* has a good reduction at *any v* (follows from Chevalley's construction).
- $G = \operatorname{SL}_{1,A}$ has good reduction at v if there exists an Azumaya algebra $\mathcal A$ over $\mathcal O_v$ such that

$$A \otimes_K K_v \simeq A \otimes_{\mathcal{O}_v} K_v$$

• $G = \operatorname{Spin}_n(q)$ has good reduction at v if $q \sim \lambda(a_1x_1^2 + \cdots + a_nx_n^2)$ with $\lambda \in K_v^{\times}$, $a_i \in \mathcal{O}_v^{\times}$ (assuming that $\operatorname{char} K^{(v)} \neq 2$).

Groups with good reduction (cont.)

Examples.

- If *G* is *K*-split, then *G* has a good reduction at *any v* (follows from Chevalley's construction).
- $G = \operatorname{SL}_{1,A}$ has good reduction at v if there exists an Azumaya algebra \mathcal{A} over \mathcal{O}_v such that

$$A \otimes_K K_v \simeq A \otimes_{\mathcal{O}_v} K_v$$

(in other words, A is unramified at v).

• $G = \operatorname{Spin}_n(q)$ has good reduction at v if $q \sim \lambda(a_1x_1^2 + \cdots + a_nx_n^2)$ with $\lambda \in K_v^{\times}$, $a_i \in \mathcal{O}_v^{\times}$ (assuming that $\operatorname{char} K^{(v)} \neq 2$).

Groups with good reduction (cont.)

Examples.

- If G is K-split, then G has a good reduction at any v (follows from Chevalley's construction).
- $G = SL_{1.A}$ has good reduction at v if there exists an Azumaya algebra A over \mathcal{O}_v such that

$$A\otimes_K K_v \simeq \mathcal{A}\otimes_{\mathcal{O}_v} K_v$$

(in other words, A is unramified at v),

(in other words, A is unramified at v).

• $G = Spin_n(q)$ has good reduction at v if $q \sim \lambda(a_1x_1^2 + \cdots + a_nx_n^2)$ with $\lambda \in K_n^{\times}$, $a_i \in \mathcal{O}_n^{\times}$ (assuming that char $K^{(v)} \neq 2$).

• For *meaningful* results, one should specialize *K*, *V* and/or *G*.

• For *meaningful* results, one should specialize *K*, *V* and/or *G*.

• Most popular case: K field of fractions of *Dedekind ring R*, and V consists of places associated with *maximal ideals* of R.

• For *meaningful* results, one should specialize *K*, *V* and/or *G*.

• Most popular case: K field of fractions of *Dedekind ring* R, and V consists of places associated with *maximal ideals* of R.

• This situation was first studied in detail by G. Harder (Invent. math. 4(1967), 165-191)

B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q} . Then G has good reduction at all primes p if and only if G is split over all \mathbb{Q}_p .

B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q} . Then G has good reduction at all primes p if and only if G is split over all \mathbb{Q}_p .

Then *nonsplit* groups with good reduction can be constructed explicitly and in some cases even classified.

B.H. Gross (Invent. math. 124(1996), 263-279) and B. Conrad.

Theorem (Gross)

Let G be an absolutely almost simple simply connected algebraic group over \mathbb{Q} . Then G has good reduction at all primes p if and only if G is split over all \mathbb{Q}_p .

Then *nonsplit* groups with good reduction can be constructed explicitly and in some cases even classified.

Proposition

Let G be an absolutely almost simple simply connected algebraic group over a number field K, and assume that V contains almost all places of K. Then the number of K-forms of G that have good reduction at all $v \in V$ is finite.

Case
$$R = k[x]$$
, $K = k(x)$, and

$$V = \{ v_{p(x)} \mid p(x) \in k[x] \text{ irreducible } \}.$$

Case
$$R = k[x]$$
, $K = k(x)$, and

$$V = \{ v_{p(x)} \mid p(x) \in k[x] \text{ irreducible } \}.$$

Theorem (Raghunathan-Ramanathan, 1984)

Let k be a field of characteristic zero, and let G_0 be a connected reductive group over k. If G' is a K-form of $G_0 \otimes_k K$ that has good reduction at all $v \in V$ then

$$G' = G'_0 \otimes_k K$$

for some k-form G'_0 of G_0 .

Case $R = k[x, x^{-1}], K = k(x), \text{ and }$

$$V = \{ v_{p(x)} \mid p(x) \in k[x] \text{ irreducible, } \neq x \}.$$

Case $R = k[x, x^{-1}], K = k(x), \text{ and }$

$$V = \{ v_{p(x)} \mid p(x) \in k[x] \text{ irreducible, } \neq x \}.$$

Theorem (Chernousov-Gille-Pianzola, 2012)

Let k be a field of characteristic zero, and let G_0 be a connected reductive group over k. Then K-forms of $G_0 \otimes_k K$ that have good reduction at all $v \in V$ are in bijection with $H^1(k((x)), G_0)$.

Case $R = k[x, x^{-1}], K = k(x), \text{ and }$

$$V = \{ v_{p(x)} \mid p(x) \in k[x] \text{ irreducible, } \neq x \}.$$

Theorem (Chernousov-Gille-Pianzola, 2012)

Let k be a field of characteristic zero, and let G_0 be a connected reductive group over k. Then K-forms of $G_0 \otimes_k K$ that have good reduction at all $v \in V$ are in bijection with $H^1(k((x)), G_0)$.

This was used to prove conjugacy of Cartan subalgebras in some infinite-dimensional Lie algebras.

- Let *K* be a finitely generated field.
- Pick a regular affine model $X = \operatorname{Spec} A$ for K, where A is a "nice" finitely generated \mathbb{Z} -algebra.
- Let *V* be set of places associated with prime divisors on *X* (*divisorial* set).

- Let *K* be a finitely generated field.
- Pick a regular affine model $X = \operatorname{Spec} A$ for K, where A is a "nice" finitely generated \mathbb{Z} -algebra.
- Let *V* be set of places associated with prime divisors on *X* (*divisorial* set).

- Let *K* be a finitely generated field.
- Pick a regular affine model $X = \operatorname{Spec} A$ for K, where A is a "nice" finitely generated \mathbb{Z} -algebra.
- Let *V* be set of places associated with prime divisors on *X* (*divisorial* set).

This problem has close connections to:

- Study of simple algebraic groups having same isomorphism classes of maximal tori.
- Finiteness properties of unramified cohomology.
- Hasse principles for algebraic groups.
- Analysis of weakly commensurable Zariski-dense subgps and applications to classical problems on locally symmetric spaces (G. Prasad-A. Rapinchuk).

- Study of simple algebraic groups having same isomorphism classes of maximal tori.
- Finiteness properties of unramified cohomology.
- Hasse principles for algebraic groups.
- Analysis of weakly commensurable Zariski-dense subgps and applications to classical problems on locally symmetric spaces (G. Prasad-A. Rapinchuk).

- Study of simple algebraic groups having same isomorphism classes of maximal tori.
- Finiteness properties of unramified cohomology.
- Hasse principles for algebraic groups.
- Analysis of weakly commensurable Zariski-dense subgps and applications to classical problems on locally symmetric spaces (G. Prasad-A. Rapinchuk).

- Study of simple algebraic groups having same isomorphism classes of maximal tori.
- Finiteness properties of unramified cohomology.
- Hasse principles for algebraic groups.
- Analysis of weakly commensurable Zariski-dense subgps and applications to classical problems on locally symmetric spaces (G. Prasad-A. Rapinchuk).

- Study of simple algebraic groups having same isomorphism classes of maximal tori.
- Finiteness properties of unramified cohomology.
- Hasse principles for algebraic groups.
- Analysis of weakly commensurable Zariski-dense subgps and applications to classical problems on locally symmetric spaces (G. Prasad-A. Rapinchuk).

- Introduction
- 2 The genus of a division algebra
- 3 Genus of a simple algebraic group
- 4 Theorem 6 and unramified cohomology
- 5 Connections to Hasse principles

- $\bullet D_1$ and D_2 have same maximal subfields if
 - $\deg D_1 = \deg D_2 =: n;$
 - for P/K of degree n, $P \hookrightarrow D_1 \Leftrightarrow P \hookrightarrow D_2$.

- $\bullet D_1$ and D_2 have same maximal subfields if
 - $\deg D_1 = \deg D_2 =: n;$
 - for P/K of degree n, $P \hookrightarrow D_1 \Leftrightarrow P \hookrightarrow D_2$.

- $\bullet D_1$ and D_2 have same maximal subfields if
 - $\deg D_1 = \deg D_2 =: n;$
 - for P/K of degree n, $P \hookrightarrow D_1 \Leftrightarrow P \hookrightarrow D_2$.

Theorem (Amitsur)

Let D_1 and D_2 be central division algebras over K.

Theorem (Amitsur)

Let D_1 and D_2 be central division algebras over K. If D_1 and D_2 have same splitting fields, i.e. for F/K we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \quad \Leftrightarrow \quad D_2 \otimes_K F \simeq M_{n_2}(F),$$

Theorem (Amitsur)

Let D_1 and D_2 be central division algebras over K. If D_1 and D_2 have same splitting fields, i.e. for F/K we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \quad \Leftrightarrow \quad D_2 \otimes_K F \simeq M_{n_2}(F),$$

then $\langle [D_1] \rangle = \langle [D_2] \rangle$ in Br(K).

Theorem (Amitsur)

Let D_1 and D_2 be central division algebras over K. If D_1 and D_2 have same splitting fields, i.e. for F/K we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \Leftrightarrow D_2 \otimes_K F \simeq M_{n_2}(F),$$

then $\langle [D_1] \rangle = \langle [D_2] \rangle$ in Br(K).

Proof of Amitsur's Theorem uses *generic splitting fields* (e.g. function fields of Severi-Brauer varieties),

Theorem (Amitsur)

Let D_1 and D_2 be central division algebras over K. If D_1 and D_2 have same splitting fields, i.e. for F/K we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \Leftrightarrow D_2 \otimes_K F \simeq M_{n_2}(F),$$

then $\langle [D_1] \rangle = \langle [D_2] \rangle$ in Br(K).

Proof of Amitsur's Theorem uses *generic splitting fields* (e.g. function fields of Severi-Brauer varieties), which are **infinite** extensions of *K*.

Theorem (Amitsur)

Let D_1 and D_2 be central division algebras over K. If D_1 and D_2 have same splitting fields, i.e. for F/K we have

$$D_1 \otimes_K F \simeq M_{n_1}(F) \Leftrightarrow D_2 \otimes_K F \simeq M_{n_2}(F),$$

then $\langle [D_1] \rangle = \langle [D_2] \rangle$ in Br(K).

Proof of Amitsur's Theorem uses *generic splitting fields* (e.g. function fields of Severi-Brauer varieties), which are infinite extensions of *K*.

What happens if one allows only splitting fields of finite degree, or just maximal subfields?

• Amitsur's Theorem is no longer true in this setting.

So question (*) is non-trivial already over global fields.

So question (*) is non-trivial already over global fields.

(But, in this case, can be answered using Albert-Brauer-Hasse-Noether theorem.)

So question (*) is non-trivial already over global fields.

(But, in this case, can be answered using Albert-Brauer-Hasse-Noether theorem.)

Question (G. Prasad-A. Rapinchuk)

Are quaternion algebras over $K = \mathbb{Q}(x)$ determined by their maximal subfields?

So question (*) is non-trivial already over global fields.

(But, in this case, can be answered using Albert-Brauer-Hasse-Noether theorem.)

Question (G. Prasad-A. Rapinchuk)

Are quaternion algebras over $K = \mathbb{Q}(x)$ determined by their maximal subfields?

• Yes - D. Saltman

So question (*) is non-trivial already over global fields.

(But, in this case, can be answered using Albert-Brauer-Hasse-Noether theorem.)

Question (G. Prasad-A. Rapinchuk)

Are quaternion algebras over $K = \mathbb{Q}(x)$ determined by their maximal subfields?

- Yes D. Saltman
- Same over K = k(x), k a number field (S. Garibaldi D. Saltman)

Let K be a field, Br(K) its Brauer group.

Let K be a field, Br(K) its Brauer group.

Definition.

Let *D* be a finite-dimensional central division algebra over *K*.

The *genus* of *D* is

$$gen(D) = \{ [D'] \in Br(K) \mid D' \text{ division algebra with same }$$
 maximal subfields as $D\}.$

Let K be a field, Br(K) its Brauer group.

Definition.

Let D be a finite-dimensional central division algebra over K. The *genus* of D is

 $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ division algebra with same } \}$

maximal subfields as D}.

Question 1. When does gen(D) reduce to a single element?

Let K be a field, Br(K) its Brauer group.

Definition.

Let D be a finite-dimensional central division algebra over K. The *genus* of D is

 $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ division algebra with same } \max \text{ maximal subfields as } D \}.$

Question 1. When does gen(D) reduce to a single element? (This means that D is uniquely determined by its maximal subfields.)

Let K be a field, Br(K) its Brauer group.

Definition.

Let D be a finite-dimensional central division algebra over K. The *genus* of D is

 $gen(D) = \{ [D'] \in Br(K) \mid D' \text{ division algebra with same } \max \text{ maximal subfields as } D \}.$

Question 1. When does gen(D) reduce to a single element? (This means that D is uniquely determined by its maximal subfields.)

Question 2. When is gen(D) finite?

For *K* a number (or global) field:

- **2** gen(D) is finite for any division algebra D/K.

For *K* a number (or global) field:

- **1** |gen(D)| = 1 for any quaternion division algebra D/K;
- **2** gen(D) is finite for any division algebra D/K.

For *K* a number (or global) field:

- **1** |gen(D)| = 1 for any quaternion division algebra D/K;
- **2** gen(D) is finite for any division algebra D/K.

For *K* a number (or global) field:

- **1** $|\mathbf{gen}(D)| = 1$ for any quaternion division algebra D/K;
- **2** gen(D) is finite for any division algebra D/K.

Both results rely on Albert - Brauer - Hasse - Noether Theorem:

The natural sequence

$$0 \longrightarrow \operatorname{Br}(K) \longrightarrow \bigoplus_{v \in V^K} \operatorname{Br}(K_v) \stackrel{\sum \operatorname{inv}_v}{\longrightarrow} \mathbb{Q}/\mathbb{Z} \to 0,$$

is exact, where V^{K} is the set of all valuations of K.

For quaternion algebras, we consider the 2-torsion:

$$0 \longrightarrow {}_{2}\mathrm{Br}(K) \longrightarrow \bigoplus_{v \in V^{K}} {}_{2}\mathrm{Br}(K_{v}).$$

For quaternion algebras, we consider the 2-torsion:

$$0 \longrightarrow {}_{2}\mathrm{Br}(K) \longrightarrow \bigoplus_{v \in V^{K}} {}_{2}\mathrm{Br}(K_{v}).$$

Locally, ${}_{2}\mathrm{Br}(K_{v})\simeq\mathbb{Z}/2\mathbb{Z}$ unless $K_{v}=\mathbb{C}.$

For quaternion algebras, we consider the 2-torsion:

$$0 \longrightarrow {}_{2}\mathrm{Br}(K) \longrightarrow \bigoplus_{v \in V^{K}} {}_{2}\mathrm{Br}(K_{v}).$$

Locally, ${}_{2}\mathrm{Br}(K_{v})\simeq \mathbb{Z}/2\mathbb{Z}$ unless $K_{v}=\mathbb{C}.$

Thus, a quaternion algebra D/K is determined by (finite) set of ramification places:

$$\mathbf{Ram}(D) = \{ v \in V^K \mid D \otimes_K K_v \text{ is a division algebra } \}.$$

Number fields (cont.)

Consequently, proving $|\mathbf{gen}(D)| = 1$, reduces to showing that $\mathbf{Ram}(D)$ is *determined* by information about maximal subfields.

Number fields (cont.)

Consequently, proving $|\mathbf{gen}(D)| = 1$, reduces to showing that $\mathbf{Ram}(D)$ is *determined* by information about maximal subfields.

This can be done using weak approximation in conjunction with

$$L = K(\sqrt{d}) \hookrightarrow D \quad \Leftrightarrow \quad d \notin {K_v^{\times}}^2 \quad \text{for all} \quad v \in \mathbf{Ram}(D).$$

Example. Consider quaternion division algebras

$$D_1 = \left(\frac{-1, 3}{\mathbb{Q}}\right)$$
 and $D_2 = \left(\frac{-1, 7}{\mathbb{Q}}\right)$.

Example. Consider quaternion division algebras

$$D_1 = \left(\frac{-1, 3}{\mathbb{Q}}\right)$$
 and $D_2 = \left(\frac{-1, 7}{\mathbb{Q}}\right)$.

We have

$$Ram(D_1) = \{2, 3\}$$
 and $Ram(D_2) = \{2, 7\}.$

$$\Rightarrow D_1 \not\simeq D_2.$$

Example. Consider quaternion division algebras

$$D_1 = \left(\frac{-1, 3}{\mathbb{Q}}\right)$$
 and $D_2 = \left(\frac{-1, 7}{\mathbb{Q}}\right)$.

We have

$$Ram(D_1) = \{2, 3\}$$
 and $Ram(D_2) = \{2, 7\}.$

$$\Rightarrow D_1 \not\simeq D_2.$$

Take $L = \mathbb{Q}(\sqrt{10})$. We have $10 \notin \mathbb{Q}_2^{\times 2}$, $\mathbb{Q}_7^{\times 2} \Rightarrow L \hookrightarrow D_2$.

Example. Consider quaternion division algebras

$$D_1 = \left(rac{-1,3}{Q}
ight) \quad ext{and} \quad D_2 = \left(rac{-1,7}{Q}
ight).$$

We have

$$Ram(D_1) = \{2, 3\}$$
 and $Ram(D_2) = \{2, 7\}.$

$$\Rightarrow D_1 \not\simeq D_2.$$

Take
$$L = \mathbb{Q}(\sqrt{10})$$
. We have $10 \notin \mathbb{Q}_2^{\times 2}$, $\mathbb{Q}_7^{\times 2} \Rightarrow L \hookrightarrow D_2$.

But $10 \equiv 1 \pmod{3}$, so $10 \in \mathbb{Q}_3^{\times 2}$ and $L \not\hookrightarrow D_1$.

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for every quaternion algebra D over k, then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for every quaternion algebra D over k, then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

• Stability holds for arbitrary division algebras of exponent 2.

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for every quaternion algebra D over k, then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

• Stability holds for arbitrary division algebras of exponent 2.

• $|\mathbf{gen}(D)| > 1$ if D is **not** of exponent 2.

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for every quaternion algebra D over k, then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

• Stability holds for arbitrary division algebras of exponent 2.

• $|\mathbf{gen}(D)| > 1$ if D is **not** of exponent 2.

• gen(D) can be infinite:

Let char $k \neq 2$. If $|\mathbf{gen}(D)| = 1$ for every quaternion algebra D over k, then $|\mathbf{gen}(D')| = 1$ for any quaternion algebra D' over k(x).

• Stability holds for arbitrary division algebras of exponent 2.

• $|\mathbf{gen}(D)| > 1$ if D is **not** of exponent 2.

• gen(D) can be infinite: for any prime p, there exist division algebras of degree p with infinite genus over certain very LARGE fields (suggested by Rost, Wadsworth, Schacher...).

Quaternion algebras with nontrivial genus: outline

Start with *nonisomorphic* quaternion division algebras

$$\Delta_1^{(0)}$$
 and $\Delta_2^{(0)}$

over a field $k^{(0)}$ of char $\neq 2$, having a *common quadratic subfield*.

Quaternion algebras with nontrivial genus: outline

Start with *nonisomorphic* quaternion division algebras

$$\Delta_1^{(0)}$$
 and $\Delta_2^{(0)}$

over a field $k^{(0)}$ of char $\neq 2$, having a *common quadratic* subfield.

Example:
$$k^{(0)}=Q$$
 and
$$\Delta_1^{(0)}=\left(\frac{-1,3}{Q}\right), \qquad \Delta_2^{(0)}=\left(\frac{-1,7}{Q}\right).$$

Quaternion algebras with nontrivial genus: outline

Start with *nonisomorphic* quaternion division algebras

$$\Delta_1^{(0)}$$
 and $\Delta_2^{(0)}$

over a field $k^{(0)}$ of char $\neq 2$, having a *common quadratic* subfield.

Example:
$$k^{(0)}=\mathbb{Q}$$
 and
$$\Delta_1^{(0)}=\left(\frac{-1,3}{\mathbb{Q}}\right), \qquad \Delta_2^{(0)}=\left(\frac{-1,7}{\mathbb{Q}}\right).$$

There exists an extension $K/k^{(0)}$ such that

$$D_1 = \Delta_1^{(0)} \otimes_{k^{(0)}} K$$
 and $D_2 = \Delta_2^{(0)} \otimes_{k^{(0)}} K$

are nonisomorphic division algebras with same quadratic subfields.

• If $\Delta_1^{(0)}$ and $\Delta_2^{(0)}$ have same maximal subfields, we are done.

- If $\Delta_1^{(0)}$ and $\Delta_2^{(0)}$ have same maximal subfields, we are done.
- Otherwise, pick $L_1 \subset \Delta_1^{(0)}$ such that $L_1 \not\hookrightarrow \Delta_2^{(0)}$.

- If $\Delta_1^{(0)}$ and $\Delta_2^{(0)}$ have same maximal subfields, we are done.
- Otherwise, pick $L_1 \subset \Delta_1^{(0)}$ such that $L_1 \not\hookrightarrow \Delta_2^{(0)}$.
- One finds

 $k^{(1)}={
m field}$ of rational functions on a $k^{(0)}$ -quadric such that

$$L_1 \otimes_{\iota(0)} k^{(1)} \hookrightarrow \Delta_2^{(0)} \otimes_{\iota(0)} k^{(1)}$$

but

$$\Delta_1^{(1)} := \Delta_1^{(0)} \otimes_{k^{(0)}} k^{(1)} \ \ \text{and} \ \ \Delta_2^{(1)} = \Delta_2^{(0)} \otimes_{k^{(0)}} k^{(1)}$$

remain nonisomorphic division algebras.

- If $\Delta_1^{(0)}$ and $\Delta_2^{(0)}$ have same maximal subfields, we are done.
- Otherwise, pick $L_1 \subset \Delta_1^{(0)}$ such that $L_1 \not\hookrightarrow \Delta_2^{(0)}$.
- One finds

 $k^{(1)}={
m field}$ of rational functions on a $k^{(0)}$ -quadric such that

$$L_1 \otimes_{k^{(0)}} k^{(1)} \hookrightarrow \Delta_2^{(0)} \otimes_{k^{(0)}} k^{(1)}$$

but

$$\Delta_1^{(1)} := \Delta_1^{(0)} \otimes_{k^{(0)}} k^{(1)}$$
 and $\Delta_2^{(1)} = \Delta_2^{(0)} \otimes_{k^{(0)}} k^{(1)}$

remain nonisomorphic division algebras.

• One takes care of other quadratic subfields similarly.

• This process generates a *tower* of extensions:

$$k^{(0)} \subset k^{(1)} \subset k^{(2)} \subset \cdots$$

and **we set** $K = \bigcup k^{(i)}$.

• This process generates a *tower* of extensions:

$$k^{(0)} \subset k^{(1)} \subset k^{(2)} \subset \cdots$$

and we set $K = \bigcup k^{(i)}$.

Note: In this construction, *K* is **HUGE**.

• This process generates a *tower* of extensions:

$$k^{(0)} \subset k^{(1)} \subset k^{(2)} \subset \cdots$$

and we set $K = \bigcup k^{(i)}$.

Note: In this construction, *K* is **HUGE**.

• Construction can be adapted to produce algebras of degree p having infinite genus (J. Meyer for p = 2, S. Tikhonov for general p).

Theorem 2. (Finiteness Theorem, C-R-R)

Let K be a finitely generated field. Then for any central division K-algebra D the genus gen(D) is finite.

Theorem 2. (Finiteness Theorem, C-R-R)

Let K be a finitely generated field. Then for any central division K-algebra D the genus gen(D) is finite.

(finitely generated field = f.-g. extension of prime subfield)

Theorem 2. (Finiteness Theorem, C-R-R)

Let K be a finitely generated field. Then for any central division K-algebra D the genus gen(D) is finite.

(finitely generated field = f.-g. extension of prime subfield)

Proofs of both theorems use analysis of ramification and information about unramified Brauer group.

For a discrete valuation v of K, we set

 K_v — completion; $\mathcal{O}_v \subset K_v$ — valuation ring; $K^{(v)}$ — residue field.

For a discrete valuation v of K, we set K_v — completion; $\mathcal{O}_v \subset K_v$ — valuation ring; $K^{(v)}$ — residue field.

• Recall that a c. s. a. A over K (or its class $[A] \in Br(K)$) is unramified at v if

For a discrete valuation v of K, we set K_v — completion; $\mathcal{O}_v \subset K_v$ — valuation ring; $K^{(v)}$ — residue field.

• Recall that a c. s. a. A over K (or its class $[A] \in Br(K)$) is unramified at v if there exists Azumaya algebra $\mathcal{A}/\mathcal{O}_v$ such that

$$A \otimes_K K_v \simeq \mathcal{A} \otimes_{\mathcal{O}_v} K_v.$$

For a discrete valuation v of K, we set K_v — completion; $\mathcal{O}_v \subset K_v$ — valuation ring; $K^{(v)}$ — residue field.

• Recall that a c. s. a. A over K (or its class $[A] \in Br(K)$) is unramified at v if there exists Azumaya algebra $\mathcal{A}/\mathcal{O}_v$ such that

$$A \otimes_K K_v \simeq A \otimes_{\mathcal{O}_v} K_v.$$

• If $(n, \operatorname{char} K^{(v)}) = 1$ or $K^{(v)}$ is perfect, there is a *residue map* $r_v \colon {}_n \operatorname{Br}(K) \longrightarrow H^1(\mathfrak{G}^{(v)}, \mathbb{Z}/n\mathbb{Z}),$

where $g^{(v)}$ is absolute Galois group of $K^{(v)}$.

For a discrete valuation v of K, we set K_v — completion; $\mathcal{O}_v \subset K_v$ — valuation ring; $K^{(v)}$ — residue field.

• Recall that a c. s. a. A over K (or its class $[A] \in Br(K)$) is unramified at v if there exists Azumaya algebra $\mathcal{A}/\mathcal{O}_v$ such that

$$A \otimes_K K_v \simeq A \otimes_{\mathcal{O}_v} K_v.$$

• If $(n, \operatorname{char} K^{(v)}) = 1$ or $K^{(v)}$ is perfect, there is a *residue map* $r_v \colon {}_n \operatorname{Br}(K) \longrightarrow H^1(\mathfrak{G}^{(v)}, \mathbb{Z}/n\mathbb{Z}),$

where $\mathfrak{G}^{(v)}$ is absolute Galois group of $K^{(v)}$.

Then $x \in {}_{n}\mathrm{Br}(K)$ is unramified at $v \Leftrightarrow r_{v}(x) = 0$.

Ramification (cont.)

• Given a set V of discrete valuations of K, one defines corresponding *unramified Brauer group*:

$$Br(K)_V = \{ x \in Br(K) \mid x \text{ unramified at all } v \in V \}.$$

Ramification (cont.)

• Given a set V of discrete valuations of K, one defines corresponding *unramified Brauer group*:

$$Br(K)_V = \{ x \in Br(K) \mid x \text{ unramified at all } v \in V \}.$$

• If residue maps r_v exist for all $v \in V$, then we have

$$_{n}\operatorname{Br}(K)_{V} = \bigcap_{v \in V} \ker r_{v}.$$

The genus of a division algebra

KEY FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$.

KEY FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$. If D_1 and D_2 are central division K-algebras of degree n having

same maximal subfields, then either <u>both</u> algebras are ramified at v or both are unramified.

KEY FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$. If D_1 and D_2 are central division K-algebras of degree n having

same maximal subfields, then either <u>both</u> algebras are ramified at v or both are unramified.

• To prove **Finiteness Theorem**, we show that a finitely generated field K can be equipped with set V of discrete valuations so that ${}_n\mathrm{Br}(K)_V$ is **finite**.

KEY FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$. If D_1 and D_2 are central division K-algebras of degree n having same maximal subfields, then either <u>both</u> algebras are ramified at v or both are unramified.

- To prove **Finiteness Theorem**, we show that a finitely generated field K can be equipped with set V of discrete valuations so that ${}_n\mathrm{Br}(K)_V$ is **finite**.
- If D is of degree n with $(n, \operatorname{char} K) = 1$, then we have $|\operatorname{\mathbf{gen}}(D)| \leq |{}_{n}\operatorname{Br}(K)_{V}| \cdot \varphi(n)^{r}$, where r is number of $v \in V$ that ramify in D.

KEY FACT: Let v be a discrete valuation of K, and n be prime to characteristic of residue field $K^{(v)}$. If D_1 and D_2 are central division K-algebras of degree n having same maximal subfields, then either <u>both</u> algebras are ramified at v or both are unramified.

- To prove **Finiteness Theorem**, we show that a finitely generated field K can be equipped with set V of discrete valuations so that ${}_{n}\mathrm{Br}(K)_{V}$ is **finite**.
- If D is of degree n with $(n, \operatorname{char} K) = 1$, then we have $|\operatorname{\mathbf{gen}}(D)| \leq |{}_n\operatorname{Br}(K)_V| \cdot \varphi(n)^r$, where r is number of $v \in V$ that ramify in D.
- where it is manuser of the training in 21
- Explicit estimates on size of genus available in certain cases.

Question. Does there exist a quaternion division algebra D over K = k(C), where C is a smooth geometrically integral curve over a number field k, such that $|\mathbf{gen}(D)| > 1$?

Question. Does there exist a quaternion division algebra D over K = k(C), where C is a smooth geometrically integral curve over a number field k, such that $|\mathbf{gen}(D)| > 1$?

• The answer is **not** known for any finitely generated *K*.

Question. Does there exist a quaternion division algebra D over K = k(C), where C is a smooth geometrically integral curve over a number field k, such that

|gen(D)| > 1?

- The answer is **not** known for any finitely generated *K*.
- One can construct examples where ${}_{2}\mathrm{Br}(K)_{V}$ is "large."

- Introduction
- 2 The genus of a division algebra
- 3 Genus of a simple algebraic group
- 4 Theorem 6 and unramified cohomology
- 5 Connections to Hasse principles

• To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.

- To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.
- Let G_1 and G_2 be semisimple groups over a field K.

- To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.
- Let G_1 and G_2 be semisimple groups over a field K. We say: $G_1 \& G_2$ have *same isomorphism classes of maximal* K-tori **if** every maximal K-torus T_1 of G_1 is K-isomorphic to a maximal K-torus T_2 of G_2 , and vice versa.

- To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.
- Let G_1 and G_2 be semisimple groups over a field K. We say: G_1 & G_2 have *same isomorphism classes of maximal* K-tori **if** every maximal K-torus G_1 of G_2 is G_3 and G_4 is G_4 is G_4 in G_4 in G_4 is G_4 in G_4 in
- Let *G* be an absolutely almost simple *K*-group.

- To define the genus of an algebraic group, we replace maximal subfields with *maximal tori* in the definition of genus of division algebra.
- Let G_1 and G_2 be semisimple groups over a field K. We say: G_1 & G_2 have same isomorphism classes of maximal

K-tori **if** every maximal *K*-torus T_1 of G_1 is *K*-isomorphic to a maximal *K*-torus T_2 of G_2 , and vice versa.

ullet Let G be an absolutely almost simple K-group.

 $\mathbf{gen}_K(G) = \mathbf{set}$ of isomorphism classes of *K*-forms G' of G having same K-isomorphism classes of maximal K-tori as G.

Question 2'. When is $gen_K(G)$ finite?

Question 2'. When is $gen_K(G)$ finite?

Theorem 3 (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

Question 2'. When is $gen_K(G)$ finite?

Theorem 3 (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

(1) $\operatorname{gen}_K(G)$ is finite;

Question 2'. When is $gen_K(G)$ finite?

Theorem 3 (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

- (1) $\operatorname{gen}_K(G)$ is finite;
- (2) If G is not of type A_n , D_{2n+1} or E_6 , then $|\mathbf{gen}_K(G)| = 1$.

Question 2'. When is $gen_K(G)$ finite?

Theorem 3 (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

- (1) $\operatorname{gen}_K(G)$ is finite;
- (2) If G is not of type A_n , D_{2n+1} or E_6 , then $|\mathbf{gen}_K(G)| = 1$.

Conjecture. (1) For K = k(x), k a number field, and G an absolutely almost simple simply connected K-group with $|Z(G)| \leq 2$, we have $|\mathbf{gen}_K(G)| = 1$;

Question 2'. When is $gen_K(G)$ finite?

Theorem 3 (G. Prasad-A. Rapinchuk)

Let G be an absolutely almost simple simply connected algebraic group over a number field K.

- (1) $\operatorname{gen}_K(G)$ is finite;
- (2) If G is not of type A_n , D_{2n+1} or E_6 , then $|\mathbf{gen}_K(G)| = 1$.
- **Conjecture.** (1) For K = k(x), k a number field, and G an absolutely almost simple simply connected K-group with $|Z(G)| \leq 2$, we have $|\mathbf{gen}_K(G)| = 1$;
- (2) If G is an absolutely almost simple group over a finitely generated field K of "good" characteristic, then $\mathbf{gen}_K(G)$ is finite.

"Unramified division algebras" \leadsto "groups with good reduction"

"Unramified division algebras" \leadsto "groups with good reduction"

Theorem 4.

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

"Unramified division algebras" \rightsquigarrow "groups with good reduction"

Theorem 4.

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Assume that $K^{(v)}$ is finitely generated, and G has good reduction at v.

"Unramified division algebras" \sim "groups with good reduction"

Theorem 4.

Let G be an absolutely almost simple simply connected group over K, and v be a discrete valuation of K.

Assume that $K^{(v)}$ is finitely generated, and G has good reduction at v.

Then \underline{every} $G' \in \mathbf{gen}_K(G)$ has good reduction at v, and reduction $\underline{G'}^{(v)} \in \mathbf{gen}_{K^{(v)}}(\underline{G}^{(v)})$.

- (I) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite;
- (II) for every $v \in V$, residue field $K^{(v)}$ is finitely generated.

- (I) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite;
- (II) for every $v \in V$, residue field $K^{(v)}$ is finitely generated.

- (I) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite;
- (II) for every $v \in V$, residue field $K^{(v)}$ is finitely generated.

- (I) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite;
- (II) for every $v \in V$, residue field $K^{(v)}$ is finitely generated.

Corollary.

Let G be an absolutely almost simple simply connected K-group.

There exists a finite subset $S \subset V$ (depending on G) such that every $G' \in \mathbf{gen}_K(G)$ has good reduction at all $v \in V \setminus S$.

A set V of discrete valuations of K satisfies (Φ) for an absolutely almost simple K-group G if

A set V of discrete valuations of K satisfies (Φ) for an absolutely almost simple K-group G if

 (Φ) set of *K*-isomorphism classes of (inner) *K*-forms G' of G having good reduction at all $v \in V \setminus S$ is finite, for any finite $S \subset V$.

A set V of discrete valuations of K satisfies (Φ) for an absolutely almost simple K-group G if

 (Φ) set of *K*-isomorphism classes of (inner) *K*-forms G' of G having good reduction at all $v \in V \setminus S$ is finite, for any finite $S \subset V$.

Question.

When can a finitely generated field K be equipped with V that satisfies (Φ) ?

A set V of discrete valuations of K satisfies (Φ) for an absolutely almost simple K-group G if

 (Φ) set of *K*-isomorphism classes of (inner) *K*-forms G' of G having good reduction at all $v \in V \setminus S$ is finite, for any finite $S \subset V$.

Question.

When can a finitely generated field K be equipped with V that satisfies (Φ) ? Does a divisorial V satisfy (Φ) ?

Algebraic groups vs. division algebras

Additional challenges for arbitrary algebraic groups:

- It is not known how to classify forms by cohomological invariants.
- Even when such description is available (e.g. for type G_2), one needs to prove finiteness of unramified cohomology in degrees > 2, which is a difficult problem.

Algebraic groups vs. division algebras

Additional challenges for arbitrary algebraic groups:

- It is not known how to classify forms by cohomological invariants.
- Even when such description is available (e.g. for type G_2), one needs to prove finiteness of unramified cohomology in degrees > 2, which is a difficult problem.

Algebraic groups vs. division algebras

Additional challenges for arbitrary algebraic groups:

- It is not known how to classify forms by cohomological invariants.
- Even when such description is available (e.g. for type G_2), one needs to prove finiteness of unramified cohomology in degrees > 2, which is a difficult problem.

Inner forms of type A

• Finiteness results for unramified Brauer groups imply that divisorial V does satisfy (Φ) for inner forms of type A_{n-1} for any finitely generated K such that $\operatorname{char} K \nmid n$.

Inner forms of type A

• Finiteness results for unramified Brauer groups imply that divisorial V does satisfy (Φ) for inner forms of type A_{n-1} for any finitely generated K such that $\operatorname{char} K \nmid n$.

Theorem 5.

(1) Let D be a central division algebra of exponent 2 over $K = k(x_1, ..., x_r)$ where k is a number field or a finite field of characteristic $\neq 2$. Then for $G = \operatorname{SL}_{m,D}$ $(m \geqslant 1)$, we have $|\operatorname{\mathbf{gen}}_K(G)| = 1$.

Inner forms of type A

• Finiteness results for unramified Brauer groups imply that divisorial V does satisfy (Φ) for inner forms of type A_{n-1} for any finitely generated K such that $\operatorname{char} K \nmid n$.

Theorem 5.

- (1) Let D be a central division algebra of exponent 2 over $K = k(x_1, ..., x_r)$ where k is a number field or a finite field of characteristic $\neq 2$. Then for $G = \operatorname{SL}_{m,D}$ $(m \geqslant 1)$, we have $|\operatorname{\mathbf{gen}}_K(G)| = 1$.
- (2) Let $G = SL_{m,D}$, where D is a central division algebra over a finitely generated field K. Then $\mathbf{gen}_K(G)$ is finite.

Spinor groups

Theorem 6.

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$.

Spinor groups

Theorem 6.

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$.

Then set of K-isomorphism classes of $Spin_n(q)$ with good reduction at all $v \in V$ is finite.

Spinor groups

Theorem 6.

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$.

Then set of K-isomorphism classes of $Spin_n(q)$ with good reduction at all $v \in V$ is finite.

Theorem 7.

Let K = k(C), where C is a smooth geometrically integral curve over a number field k, and set $G = \operatorname{Spin}_n(q)$.

Spinor groups

Theorem 6.

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$.

Then set of K-isomorphism classes of $Spin_n(q)$ with good reduction at all $v \in V$ is finite.

Theorem 7.

Let K = k(C), where C is a smooth geometrically integral curve over a number field k, and set $G = \operatorname{Spin}_n(q)$. If either $n \ge 5$ is odd, or $n \ge 10$ is even and q is isotropic, then $\operatorname{\mathbf{gen}}_K(G)$ is finite.

• Similar results for groups of type G_2 over K = k(C) having good reduction, with C a smooth geometrically integral curve over a number field k.

• Similar results for groups of type G_2 over K = k(C) having good reduction, with C a smooth geometrically integral curve over a number field k.

Theorem 8

Let G be a simple algebraic group of type G_2 .

• Similar results for groups of type G_2 over K = k(C) having good reduction, with C a smooth geometrically integral curve over a number field k.

Theorem 8

Let G be a simple algebraic group of type G_2 .

(1) If K = k(x), where k is a number field, then $|\mathbf{gen}_K(G)| = 1$;

• Similar results for groups of type G_2 over K = k(C) having good reduction, with C a smooth geometrically integral curve over a number field k.

Theorem 8

Let G be a simple algebraic group of type G_2 .

- (1) If K = k(x), where k is a number field, then $|\mathbf{gen}_K(G)| = 1$;
- (2) If $K = k(x_1, ..., x_r)$ or k(C), where k is a number field, then $\mathbf{gen}_K(G)$ is finite.

- Introduction
- 2 The genus of a division algebra
- Genus of a simple algebraic group
- 4 Theorem 6 and unramified cohomology
- 5 Connections to Hasse principles

reduction at all $v \in V$ is finite.

Theorem 6.

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$. Then set of K-isomorphism classes of Spin_n(q) with good

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$.

Then set of K-isomorphism classes of $Spin_n(q)$ with good reduction at all $v \in V$ is finite.

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$.

Then set of K-isomorphism classes of $Spin_n(q)$ with good reduction at all $v \in V$ is finite.

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$.

Then set of K-isomorphism classes of $Spin_n(q)$ with good reduction at all $v \in V$ is finite.

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$.

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$.

Then set of K-isomorphism classes of $Spin_n(q)$ with good reduction at all $v \in V$ is finite.

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$. Key case: i = 3.

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$.

Then set of K-isomorphism classes of $Spin_n(q)$ with good reduction at all $v \in V$ is finite.

- Using Milnor's conjecture, we reduce the argument to finiteness of unramified cohomology $H^i(K, \mu_2)_V$, for $i \ge 1$, where $\mu_2 = \{\pm 1\}$.
- We establish finiteness of $H^i(K, \mu_2)_V$ for all $i \ge 1$. Key case: i = 3. Involves Kato's and Jannsen's results on cohomological Hasse principle for H^3 .

There exist residue maps

$$r_v^i : H^i(K, \mu_n^{\otimes j}) \to H^{i-1}(K^{(v)}, \mu_n^{\otimes (j-1)})$$

for all $i \ge 1$, all j, whenever $(n, \operatorname{char} K^{(v)}) = 1$.

(I) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite

There exist residue maps

$$r_v^i: H^i(K, \mu_n^{\otimes j}) \to H^{i-1}(K^{(v)}, \mu_n^{\otimes (j-1)})$$

for all $i \ge 1$, all j, whenever $(n, \operatorname{char} K^{(v)}) = 1$.

Define ith unramified cohomology of K w.r.t. V by

$$H^i(K, \mu_n^{\otimes j})_V = \bigcap_{v \in V} \ker r_v^i.$$

(I) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite.

There exist residue maps

$$r_v^i: H^i(K, \mu_n^{\otimes j}) \to H^{i-1}(K^{(v)}, \mu_n^{\otimes (j-1)})$$

for all $i \ge 1$, all j, whenever $(n, \operatorname{char} K^{(v)}) = 1$.

Define ith unramified cohomology of K w.r.t. V by

$$H^i(K, \mu_n^{\otimes j})_V = \bigcap_{v \in V} \ker r_v^i.$$

We consider set V of discrete valuations of K satisfying

(I) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite

There exist residue maps

$$r_v^i: H^i(K, \mu_n^{\otimes j}) \to H^{i-1}(K^{(v)}, \mu_n^{\otimes (j-1)})$$

for all $i \ge 1$, all j, whenever $(n, \operatorname{char} K^{(v)}) = 1$.

Define ith unramified cohomology of K w.r.t. V by

$$H^i(K, \mu_n^{\otimes j})_V = \bigcap_{v \in V} \ker r_v^i.$$

We consider set V of discrete valuations of K satisfying (I) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite.

There exist residue maps

$$r_v^i : H^i(K, \mu_n^{\otimes j}) \to H^{i-1}(K^{(v)}, \mu_n^{\otimes (j-1)})$$

for all $i \ge 1$, all j, whenever $(n, \operatorname{char} K^{(v)}) = 1$.

Define ith unramified cohomology of K w.r.t. V by

$$H^i(K, \mu_n^{\otimes j})_V = \bigcap_{v \in V} \ker r_v^i.$$

We consider set V of discrete valuations of K satisfying (I) for any $a \in K^{\times}$, set $V(a) := \{v \in V \mid v(a) \neq 0\}$ is finite.

For such V, we define $Picard\ group\ \operatorname{Pic}(V) = \operatorname{Div}(V)/\operatorname{P}(V)$, $\operatorname{Div}(V) = \operatorname{free}\ abelian\ group\ on\ v \in V$, $\operatorname{P}(V) = \operatorname{subgp}\ of\ "principal\ divisors"\ \sum v(a)v,\ a \in K^\times$.

Theorem 9

Consider a field K equipped with set V of discrete valuations satisfying (I) such that $(\operatorname{char} K^{(v)}, 2) = 1$ for all $v \in V$. Let $n \ge 5$.

Theorem 9

Consider a field K equipped with set V of discrete valuations satisfying (I) such that $(\operatorname{char} K^{(v)}, 2) = 1$ for all $v \in V$. Let $n \geq 5$. Assume that

- Pic(V)/2 · Pic(V) is finite;
- ② $H^i(K, \mu_2)_V$ are finite for all $i = 1, ..., \ell := [\log_2 n] + 1$

Theorem 9

Consider a field K equipped with set V of discrete valuations satisfying (I) such that $(\operatorname{char} K^{(v)}, 2) = 1$ for all $v \in V$. Let $n \geq 5$. Assume that

- Pic(V)/2 · Pic(V) is finite;
- ② $H^{\iota}(K, \mu_2)_V$ are finite for all $i = 1, ..., \ell := [\log_2 n] + 1$.

Theorem 9

Consider a field K equipped with set V of discrete valuations satisfying (I) such that $(\operatorname{char} K^{(v)}, 2) = 1$ for all $v \in V$. Let $n \geq 5$. Assume that

- Pic(V)/2 · Pic(V) is finite;
- \bullet $H^i(K, \mu_2)_V$ are finite for all $i = 1, ..., \ell := [\log_2 n] + 1$.

Theorem 9

Consider a field K equipped with set V of discrete valuations satisfying (I) such that $(\operatorname{char} K^{(v)}, 2) = 1$ for all $v \in V$. Let $n \geq 5$. Assume that

- Pic(V)/2 · Pic(V) is finite;
- \bullet $H^i(K, \mu_2)_V$ are finite for all $i = 1, ..., \ell := [\log_2 n] + 1$.

Then set of K-isom. classes of spinor groups $G = \operatorname{Spin}_n(q)$ of nondeg. quadratic forms q over K in n variables having good reduction at all $v \in V$ is finite,

Theorem 9

Consider a field K equipped with set V of discrete valuations satisfying (I) such that $(\operatorname{char} K^{(v)}, 2) = 1$ for all $v \in V$. Let $n \geq 5$. Assume that

- Pic(V)/2 · Pic(V) is finite;
- \bullet $H^i(K, \mu_2)_V$ are finite for all $i = 1, ..., \ell := [\log_2 n] + 1$.

Then set of K-isom. classes of spinor groups $G = \operatorname{Spin}_n(q)$ of nondeg. quadratic forms q over K in n variables having good reduction at all $v \in V$ is finite, of size at most

$$|\operatorname{Pic}(V)/2 \cdot \operatorname{Pic}(V)| \cdot \prod_{i=1}^{c} |H^{i}(K, \mu_{2})_{V}|.$$

- Introduction
- 2 The genus of a division algebra
- Genus of a simple algebraic group
- 4 Theorem 6 and unramified cohomology
- 5 Connections to Hasse principles

Let

- K be a field
- \bullet V a set of discrete valuations of K
- *G* an algebraic group over *K*.

Let

- K be a field
- V a set of discrete valuations of K
- *G* an algebraic group over *K*.

Let

- K be a field
- V a set of discrete valuations of K
- *G* an algebraic group over *K*.

One says that the Hasse principle holds if global-to-local map

$$\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$$

is *injective*.

Let

- K be a field
- V a set of discrete valuations of K
- *G* an algebraic group over *K*.

One says that the Hasse principle holds if global-to-local map

$$\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$$

is injective.

Kernel of $\theta_{G,V}$ is called *Tate-Shafarevich set* $\coprod (G,V) := \ker \theta_{G,V}.$

Let k = number field, V = set of all places of k.

• If G is *simply-connected* or *adjoint* alg. K-group, then

$$\theta_{G,V} \colon H^1(k,G) \to \prod_{v \in V} H^1(k_v,G)$$

is injective (i.e. Hasse principle holds)

• For any alg. k-group G, the map $\theta_{G,V}$ is *proper*; in particular, $\mathrm{III}(G,V)$ is **finite**.

Let k = number field, V = set of all places of k.

• If *G* is *simply-connected* or *adjoint* alg. *K*-group, then

$$\theta_{G,V} \colon H^1(k,G) \to \prod_{v \in V} H^1(k_v,G)$$

is injective (i.e. Hasse principle holds).

• For any alg. k-group G, the map $\theta_{G,V}$ is *proper*; in particular, $\mathrm{III}(G,V)$ is finite.

Let k = number field, V = set of all places of <math>k.

• If G is simply-connected or adjoint alg. K-group, then

$$\theta_{G,V} \colon H^1(k,G) \to \prod_{v \in V} H^1(k_v,G)$$

is injective (i.e. Hasse principle holds).

• For any alg. k-group G, the map $\theta_{G,V}$ is *proper*; in particular, $\coprod(G,V)$ is finite.

Let k = number field, V = set of all places of <math>k.

• If G is simply-connected or adjoint alg. K-group, then

$$\theta_{G,V} \colon H^1(k,G) \to \prod_{v \in V} H^1(k_v,G)$$

is injective (i.e. Hasse principle holds).

• For any alg. k-group G, the map $\theta_{G,V}$ is *proper*; in particular, $\coprod(G,V)$ is finite.

We show that global-to-local map is proper for groups over K = k(C) in certain situations.

Theorem 10

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$.

• Using Milnor's conjecture, reduce proof to finiteness of

$$\Omega_i = \ker \left(H^i(K, \mu_2) \to \prod_{v \in V} H^i(K_v, \mu_2) \right)$$

for all $i \ge 1$.

Theorem 10

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$. Then for $G = SO_n(q)$, the map

$$\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$$

is proper.

• Using Milnor's conjecture, reduce proof to finiteness of

$$\Omega_i = \ker \left(H^i(K, \mu_2)
ightarrow \prod_{v \in V} H^i(K_v, \mu_2)
ight)$$

for all $i \ge 1$.

Theorem 10

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$. Then for $G = SO_n(q)$, the map

$$\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$$

is proper.

Key steps of the argument:

• Using Milnor's conjecture, reduce proof to finiteness of

$$\Omega_i = \ker \left(H^i(K,\mu_2)
ightarrow \prod_{v \in V} H^i(K_v,\mu_2)
ight)$$

for all $i \ge 1$.

Theorem 10

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$. Then for $G = SO_n(q)$, the map

$$\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$$

is proper.

Key steps of the argument:

• Using Milnor's conjecture, reduce proof to finiteness of

$$\Omega_i = \ker \left(H^i(K, \mu_2) \to \prod_{v \in V} H^i(K_v, \mu_2) \right)$$

for all $i \ge 1$.

Theorem 10

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places. Fix $n \ge 5$. Then for $G = SO_n(q)$, the map

$$\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$$

is proper.

Key steps of the argument:

• Using Milnor's conjecture, reduce proof to finiteness of

$$\Omega_i = \ker \left(H^i(K, \mu_2) \to \prod_{v \in V} H^i(K_v, \mu_2) \right)$$

for all $i \ge 1$.

- G of type G₂
- $G = SU_n(L/K, h)$, L/K quadratic extension, h nondegenerate hermitian form of dim ≥ 2
- $G = SL_{1,A}$, A a c.s.a/K of square-free degree.

- \bullet G of type G_2
- $G = SU_n(L/K, h)$, L/K quadratic extension, h nondegenerate hermitian form of dim ≥ 2
- $G = SL_{1,A}$, A a c.s.a/K of square-free degree.

- \bullet G of type G_2
- $G = SU_n(L/K, h)$, L/K quadratic extension, h nondegenerate hermitian form of dim ≥ 2
- $G = SL_{1,A}$, A a c.s.a/K of square-free degree.

- \bullet G of type G_2
- $G = SU_n(L/K, h)$, L/K quadratic extension, h nondegenerate hermitian form of dim ≥ 2
- $G = SL_{1,A}$, A a c.s.a/K of square-free degree.

For K = k(C) and V = divisorial set of valuations, we also establish properness of $\theta_{G,V}$ for:

- \bullet G of type G_2
- $G = SU_n(L/K, h)$, L/K quadratic extension, h nondegenerate hermitian form of dim $\geqslant 2$
- $G = SL_{1,A}$, A a c.s.a/K of square-free degree.

Conjecture.

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places.

For K = k(C) and V = divisorial set of valuations, we also establish properness of $\theta_{G,V}$ for:

- \bullet G of type G_2
- $G = SU_n(L/K, h)$, L/K quadratic extension, h nondegenerate hermitian form of dim ≥ 2
- $G = SL_{1,A}$, A a c.s.a/K of square-free degree.

Conjecture.

Let C be a smooth geometrically integral curve over a number field k, K = k(C), and V divisorial set of places.

Then for any absolutely almost simple alg. group G over K,

$$\theta_{G,V} \colon H^1(K,G) \to \prod_{v \in V} H^1(K_v,G)$$

is proper.

Finiteness results also hold for:

• $K = \mathbb{F}_q(S)$, with \mathbb{F}_q a finite field of char. $\neq 2$, S/\mathbb{F}_q smooth geom. integral surface, and V a divisorial set of places

• K = F(C), with F a field of char. $\neq 2$ s.t.

 (F_2') For every finite separable extension L/F, the quotient $L^{\times}/L^{\times 2}$ is finite,

C/F a smooth geom. integral curve, and V set of geometric places (corresponding to closed points of C).

Finiteness results also hold for:

• $K = \mathbb{F}_q(S)$, with \mathbb{F}_q a finite field of char. $\neq 2$, S/\mathbb{F}_q smooth geom. integral surface, and V a divisorial set of places

- K = F(C), with F a field of char. $\neq 2$ s.t.
- (F_2') For every finite separable extension L/F, the quotient $L^{\times}/L^{\times 2}$ is finite,

C/F a smooth geom. integral curve, and V set o geometric places (corresponding to closed points of C).

Finiteness results also hold for:

- $K = \mathbb{F}_q(S)$, with \mathbb{F}_q a finite field of char. $\neq 2$, S/\mathbb{F}_q smooth geom. integral surface, and V a divisorial set of places (fields k(C) and $\mathbb{F}_q(S)$ are 2-dimensional global fields in Kato's terminlogy)
- K = F(C), with F a field of char. $\neq 2$ s.t.
- (F_2') For every finite separable extension L/F, the quotient $L^{\times}/L^{\times 2}$ is finite,

C/F a smooth geom. integral curve, and V set of geometric places (corresponding to closed points of C).

Finiteness results also hold for:

- $K = \mathbb{F}_q(S)$, with \mathbb{F}_q a finite field of char. $\neq 2$, S/\mathbb{F}_q smooth geom. integral surface, and V a divisorial set of places (fields k(C) and $\mathbb{F}_q(S)$ are 2-dimensional global fields in Kato's terminlogy)
- K = F(C), with F a field of char. $\neq 2$ s.t.
- (F'₂) For every finite separable extension L/F, the quotient $L^{\times}/L^{\times 2}$ is finite,

C/F a smooth geom. integral curve, and V set of geometric places (corresponding to closed points of C).