Kolmogorov’s 1941 Theory



Richardson’s idea of the independence of the macroscopic flow features on viscosity

cartoon picture (in reality it is important that the flow is 3D)
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The net macroscopic effect remains (approximately) the same



-vAu+uVu+Vp/po=0
divu=0

Let’s apply it to pipe flows:
PPYY PIP boundary condition u=0

> —_—> density o radius R >
pressure r, _— viscosity v pressure r,
mean velocity U (unknown) .
X, axis
length L

Problem: How much fluid flows through the pipe per unit of time?
Or: what is the mean velocity of fluid U in the pipe (defined by 7R2U = amount of fluid per unit time)?

Attempt #1: Explicit solution of Navier-Stokes! Szlfzflic é
y
profile —>
uy = 2U(1— (z5+23)/R), uy = uz =0
_ 2 Only works for real
P = 8QVU:E1/R + const. flows when Re=UR/v
U = (P1 — PQ)RQ/S,OVL is below a few thousand;

recall v = 10 -® for water
“Poiseuille's flow”



R
R

mean velocity U (unknown)

density o radius R

pressure P,
viscosity v pressure P,

Re = UR/v

length L
Richardson’s philosophy: U should be independent of » once Re is large
(and the flow becomes turbulent)

Available quantities, assuming translational symmetry in x,:

P’=(P, -P,) / L (pressure drop per unit length), R, p, (but not v/ !)

Task: express U from these quantities in a way which is independent
of the choice of units of measurement.

dimensions: [P’]=[force][length]3 = [mass][length] 2 [time]2
[R]=[length] Compare with

[Q]=[maSS][|erjgth]': the previous formula
[U]=[length][time] U = P'R%/8pv

The only possibility: U = const. (P’/p )Y/2 RV2

In practice the formula works quite well — a remarkable fact given the rough derivation! Corrections to
the formula: c=c(Re, roughness coefficient of the wall), but it does become almost constant for large Re
and a given wall roughness. It seems to be absolutely hopeless to try to derive this from Navier-Stokes.



Another way pressure =L — density =1 | radius=1
to look at so that pressure — viscosity v * pressure =0
per unit length = 1 mean velocity u (unknown)

the derivation

length L

In our set-up Re’

Normalize by suitable choice of units of length, time, mass; would differ by
a constant factor

then u should be independent of v * (which plays the role of 1/Re’) from the standard
Re=RU/v

Go back to the original units and recover U = const. (P’/p )/2 RY/2
with const. = u



The same argument in a slightly different language:

1. Assume the formula U = f(P’,R,0) is independent of the choice of units.

3. Then [P’] = [force]/[length] 3 = [mass] [length] -2 [time] 2
and hence [old P’] = u A2 72 [new P’]
similarly [old R] = X [new R]
[old ¢ ]= u A [new (]
and [old U]= A\ 71 [new U]

4. The formula U=f(P’,R,p ) is the same in the old and the new quantities
therefore f( uA272P’, AR, uX3)=A71f(P, R, 0)
which is the same as
fla P, BR, v 0 )= V2 Y2y 2 f(P’, R,0)

or
U=f(P,R,0) =P Y2 1/2RY2 §(1,1,1)



In terms of Navier-Stokes, the “normalization” is related to the scaling symmetry:

If u(x,t), p(x,t) solve
Navier Stokes

with a given
viscosity v

(which also plays a crucial
role in the regularity theory)

forany A>0

A Uu(Ax, A%t), A\2p(Ax, A\%t)
also solve Navier-Stokes
(with the same viscosity)

Not good for scale models (as can also be seen by using the Reynolds number):

1:10 scale model,
(corresponding to A=10)

> O
velocity should be 10 U

(can be hard to achieve in practice in some cases)
also, our camera should run 100 times faster

In reality, the situation is not so bad,
due to the Richardson effect.



Following Kolmogorov (1941), we introduce

€ = rate of energy dissipation in the fluid per unit mass

It is not the instantaneous dissipation (which would depend on time), but a
suitable average (either over time, or a statistical ensemble). It can depend on x.

For example, in the pipe flows we can imagine the following:

- e=c (r) with r = distance to pipe axis

In fact, we can imagine that ¢(r) be nearly constant inr, except possibly
near the boundaries, when r~ R . In practice this is not a bad assumption.
(We will look at the possible r-dependence later.)



_ . T : . R
e=€ (r) (vx{lth r —.dlstance tp pipe ams)X
The variable € should be considered U energy dissipation per unit mass

as a “macroscopic quantity”, similar
to U, P’, etc., in contrast to the “microscopic field” u(x,t).
Typically we do not need all the microscopic details of u(x,t).

According to Kolmogorov, ¢, together with the density p are the basic
“macroscopic” quantities characterizing the flow. The key point now is

The main assumption: ¢ does not depend on v
Typical considerations This could of course
yp /be also derived based

1. Dependence of e on U and R assuming € is constantinr. on our previous formula
U = const. (P’/p )/2 RY/2

dimension of e: [mass][velocity] ? [time] -1 [mass] 1 = [length] ? [time] 3
dimension of R: [length]
dimension of U: [length][time] N

If € = € (U,R), independently of the choice of units, we must have
€ = const. U3/R
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2. Kolmogorov Length: -'@ @-é g?

What are the dimension \ of the smallest whirls in the flow? diameter
Or: what is the space resolution A we need for a full numerical simulation? ~ Kolmogorov
Or: what is the smallest length-scale \ in the flow? length

Kolmogorov: The only relevant quantities are €, o, and v

dimensions: [¢] = [length]? [time]'3 , [V]=[length]? [time]?, [o] = [mass][length] A
[A]= [length]
The only possible formula for A (assuming it exists):
A =const. € V4 y3/4 _ “Kolmogorov length”

Recalling € = const. U3/ R and Re = UR/v, we obtain

A =const. R / Re 3/4 (for typical garden hose flows Re ~ 10° — 10°)



3. Kolmogorov Time:

What are the smallest time-scales 7 (or the highest time frequencies f=1/7)?

Note that we do not list the macroscopic

Relevant variables: € VU, 0 velocity U. Therefore we are talking about
local time-scales, as observed in the system

of a moving particle

Exercise: based on dimensional analysis, show that the only possible formula is

7= const. ¢ Y2 p1/2

In terms of Reynolds number

of order 10~ sec in a typical
garden hose flow

7= const. (R/U) Re /2
Conclusion for numerical simulations: # of grid points in space-time is at least (Re) 1V/4 . In reality,
for numerical simulation one should probably take the time scale 7 ~ A\/U ~ R/U (Re) -3/4, (obtained
from X and Taylor’s hypothesis of frozen turbulence), which leads to ~ (Re)3 space-time grid points.



4. Kolmogorov spectrum

We have determined the highest significant space and time frequencies in the flows.
What about the whole spectrum of the velocity field, how much energy is in which
frequency, both spatial and temporal?

Analogy:
Recall the classical “black body radiation” spectrum in statistical physics:
i

A

Toward the
"ultraviolat
catastrophe"

s | Rayleigh-Jeans Law V2
By f(v)dv
41

Energy per unit time radiated
in frequencies between v, and v,

Planek Law

Curves agree at el %
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(2 — a region of fluid of unit mass
E(k) dk - energy contained in the velocity field uin Q in (spatial)
frequencies with magnitudes between k and k+dk (??? — see below)

If u was supported in Q2 we would write

0 = (2n)73 / a(€)e de %

ul

R3
[ulde = @0 [la©Fa
and

e [

cartoon picture in
the frequency space

O de = (2m)° ) [P ana = [ " B (k) d



In general we replace Q2 by a smooth cut-off function

d(x) with [ o¢ ? =1 and replace u by ¢u in the above
formulae. Remember that we really consider some support of ¢

ensemble averages, so this procedure is OK.

/RS pul? dx = (2m) 7 /RS pul® dg = /OOO k> dk /S ug|?(kn) dn = /OOO E(k) dk

E(k)

ambiguity at low
frequencies created

by the choice of ¢
¥

< . : >
“inertial range” 1/
Kolmogorov

frequency



Kolmogorov: in the inertial range, E(k) should depend only on
the “macroscopic quantities” ¢, k, and p.

dimensions: dim [E(k) dk] = dim [energy]/ [mass]= [length]? [time]
dim dk =dim k = [length]?
dim E = [length]? [time]?
dim [e] = [length]? [time]3

The only possible formula for E:

E(k) = const. (€)?/3 k -5/3 Kolmogorov-Obukhov 5/3 law

“spatial energy spectrum of turbulent velocity field”



Temporal spectra:

a) In aframe at rest with respect to space
for a fixed x consider the functions t — u(x,t) = u(t) and its frequencies
conceptually - Fourier decomposition of t — u(t) on a unit time interval

(or an interval of a fixed length — we are working modulo multiplicative constants) .

¢ —compactly supported in the unit interval, with [ |¢(t)|? dt=1.

stut) = (2m)" [ Guw)etds
Guldt — (2«)—1/@2@:/13(@0)@

/

If the “macroscopic” velocity U near x does not vanish , we have three
natural quantities on which E(w) can depend: ¢, w, U.



Taylor’s “frozen turbulence” hypothesis

Time frequencies behave as if they were
generated by watching at a fixed point
a “frozen field” passing by at speed U

Structure with
spatial frequency k

Temporal frequency
\\ of crossing a fixed point
in space: w =Ukcos «
« angle between the vectors U and k.

))

*
U

If the space structures satisfy a k” power-law, the temporal frequencies

also satisfy an w” power law.

Dimensions: dim w = [time]!

dim (E(w) dw ) = dim u? = [length]?/[time]?

dim E(w) = [length]?/[time]

Conclusion: E(w) = const. (Ue)?/3w-5/3



b) Temporal frequencies in the frame of the moving particle

Now the only relevant quantities are ¢, w, E(w)
same dimensions as before, (although the meaning of E(w) and w is modified)

Formula for E(w) based on dimensional analysis

E(w) = const. € w?



Reynolds Stress, Reynolds equations, the closure problem

Consider again the pipe flow:

—_—> density o T radius R
pressure P, — viscosity v pressure P,
velocity u(x,t)
length L

u-vAu+uVu+Vp/o=0
divu=0
boundary condition u=0

X, axis

Note the change of notation

Write the solutions u as u=U+v, where U is the “average” and v is the “fluctuations”.
Often notation U=<u> is used. In the simple situation of pipe flow we can think of time averages.

U,=U;=0, U;=U,(r) Try to get an equation for U,(r) by averaging Navier-Stokes




Averaging the equations:
We write Navier-Stokes as
uy — vVAu +diviu ® u) + Vp =0

Write u(z,t) = U(z) + v(x,t)

( ) (SU) ( ) note that <UXRv> =0
/ —vVAU +div U@ U+ <v®v>)+ VP =0
Pressure
average

< V05 >= Rij

—vAU +div (U®U +R)+ VP =0

R is unknown



Try to write equations for u; u; which would follow from Navier-Stokes for u
and average these equations.

Obtain equations for R; which however contain averages of cubic quantities
<u; y; u> =Ry (among other things).

Equations for Ry, ?  need (among other things) the fourth order moments
<u; U; U, up>

We can try to continue, but new unknowns keep emerging and the system
never closes - this is the closure problem.



Exercise: calculation in the channel flow (or the pipe flow) as v — 0.



