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Outline

• Reminder: The multi-period model.

• The continuous time model.

• Equilibrium dynamics and BSDEs.

• Back to the discrete time model.

Literature: H, Pirvu & dos Reis “On Securitization, Market
Completion and Equilibrium Risk Transfer”, WP, (2008).



The model in discrete time

• We considered a dynamic incomplete market model with:
- a finite set A of agents endowed with Ha (a ∈ A)
- a finite sample space (Ω,F , P)

• At time t = 1, ...,T the agents maximize preference functionals

Ua
t : L(FT ) → L(Ft)

that are concave, normalized, monotone, translation invariant,

Ua
t (X + Z ) = Ua

t (X ) + Z for all Z ∈ L(Ft),

and time consistent, i.e.,

Ua
t (X ) = Ua

t

(
Ua

t+1(X )
)

for all X ∈ Ft+1.

• The illiquid asset paid dividends so its terminal value was given.

The illiquid asset was priced in equilibrium.



The Random Walk Framework

• The agents’ preferences followed the backward dynamics:

Ua
t+h − Ua

h = f a
t (Z a

t+h) + Z a
t+h ·∆bt+h, Ua

T = Ha.

• From this we concluded that

Rt+h − Rh = ZR
t+h · ∇ft(0) + ZR

t+h ·∆bt+h, RT = H

V a
t+h − V a

h = ga(ZR
t+h,Z

a
t+h) + Z a

t+h ·∆bt+h, V a
T = V a

where
ZR

t+h = πt(Rt+h) and Z a
t+h = πt(V

a
t+h).

What happens if the time between two trading
periods tends to zero?



Equilibrium Pricing in Continuous Time

• The agents’ incomes are exposed to financial and non-financial
risk:

W a = Ha(ST ,Ra
T ) where Ra

T ∼ Q(RT ; ·).

• Individual risks Ra
T originate from a common risk factor RT .

• Preferences are described dynamic translation invariant, ...
preference functionals.

• A third party (insurance company) issues a derivative on RT :

BT = H(RT ).

• Exchange of risk exposure through trading the derivative.

The derivative in fixed supply and will be priced by
an equilibrium approach.



The microeconomic setup

• The agents are exposed to financial and non-financial risk factors:

− Logarithmic Asset prices follow a diffusion process:

dSt = θS(Rt)dt + dW S
t .

− The external risk process follows a Brownian motion with drift:

dRt = µdt + dW R
t .

• The agents have bounded random incomes of the form:

Ha = ha(ST ,RT + W a
T ) +

∫ T

0
ϕa

s (Ss ,Rs + W a
s )ds.

where all the Brownian motions W S ,W R , (W a) are independent.

The market is incomplete even after the new asset is introduced.



The optimization problem

• Their risk preferences are described by backward stochastic
differential equations (BSDEs):

−Y a
t = Ha −

∫ T

t
ga(s,Xs ,Z

a
s )ds −

∫ T

t
Z a

s · dWs

where X = (S ,R, (W a)a∈A) is the forward process.

• One can show (key!) that all of the entries of the vector

Z a
t =

(
ZS

t ,ZR
t , (Zb

t )b∈A

)
are zero except ZS ,ZR ,Z a; these refer to the agents’ risk exposure.

• We consider the case of entropic utility functions:

ga(t, x , z) =
1

2γa
‖z‖2 Y a

t =
1

γa
log E[−e−γaHa |Ft ]

All BSDEs are assumed to satisfy a comparison principle.



The Derivative

• There is an insurance company or investment bank ...
− ... that holds a portfolio of climate sensitive securities, and ...
− ... issues a bond whose payoff B depends on the portfolio risk:

B = h(RT ) +

∫ T

0
ϕs(Rs)ds or B = H(RT ).

• It is in unit net supply and priced by an equilibrium condition:

Bt = EP∗ [B|Ft ] w.r.t an endogenous pricing measure P∗.

• We state conditions that guarantee that an equilibrium pricing
measure exists.

We focus on risk transfer rather than risk sharing.



Pricing Schemes

• The derivative is priced in a market environment; hence by a
linear pricing scheme

l : L2(P) → R+.

• Each such scheme can be identified with a measure Q ≈ P.

• We assume that the agents have no impact on stock prices so
the restriction on F S is given by the price of financial risk θS .

• Notice that the pricing rule is linear for the agents, not for the
insurer.

The market price of external risk will be
endogenous.



Pricing Schemes

• The set of all possible pricing rules is given by

P = {Q ≈ P and S is a Q-martingale}.

• For each Q ∈ P the density is a uniformly integrable martingale:

Zt = exp

(
−

∫ t

0

(
θS

θR
s

)
d

(
W S

s

W R
s

)
− 1

2

∫ t

0
|θs |2ds

)
• The set of all pricing linear rules can be identified with the set of

market prices of external risk θR = (θR
s )

such that (Zt) defined by the above equation is an u.i. martingale.

The set of pricing rules is identified by the market
prices of external risk.



Risk Sharing vs Risk Transfer

• In a model of risk sharing the the bond pays no dividends.

• Exchange of risk exposures takes place through a fictitious asset:

dB̄θ
t = θR

t dt + dW R

with a given volatility process that can be normalized.

• In a model of risk transfer exchange of risk exposures takes place
through market prices:

dBθ
t = κR

t (θR
t dt + dW R) + ...dt + ...dW S

t .

with an endogenous volatility process that cannot be normalized!

We characterize the equilibrium market price of risk
and represent κR .



Utility Optimization and Market Clearing

• There is no a-priori reason that the bond “adds somethings”.

• Given a candidate θR for the market price of external risk:
− ... let us assume the market is complete (we verify this later), ...
− ... and introduce a pricing measure Pθ along with ...
− ... the corresponding bond price process (Bθ

t ), ...
− ... and solve the agents’ optimization problems.

• For a given admissible trading strategy π in both markets:

− dY a
t (π) = ga(t,Xt ,Zt)dt − ZtdWt

with terminal condition

Y a
T (π) = −Ha − V a,θ

T (π).

• The agent’s goal is the minimize Y a
0 (π).

We first solve this problem for a given pricing
measure.



Optimal Trading Strategies and Equilibrium

• Let (Y a,Z a) be the unique solution of the agent’s utility BSDE.

• For a given measure Pθ the optimal strategy πa is of the form:

πa
t = (πa,S

t , πa,B
t ) = G a(t,Z a

t , θS
t , κR

t ).

• We need to satisfy the equilibrium condition:∑
a

πa,B
t = 1.

• General equilibrium theory in a complete market environment:

competitive equilibria ↔ representative agent equilibria.

• Due to the the specific structure of idiosyncratic risk exposures:

Analysis can be reduced to a representative agent economy.

We can describe equilibrium prices by a single BSDE.



The Representative Agent

• Assume that only two agent are active in the market: A = {a, b}.

• The representative agent minimizes aggregate risk: the BSDE is

− dY ab
t = gab(t,Xt ,Zt)dt − ZtdWt

with the terminal condition

Y ab
T (π) = −Ha − Hb − H − V ab,θ

T (π)

where the driver ga,b is defined by the inf-convolution:

gab(t, z) = inf
x
{ga(t, z − x) + gb(t, x)} =

1

2γ
‖z‖2.

• Under some assumptions the agent’s minimization problem has a
solution for a given pricing measure.

We choose θR such that πab,B
t ≡ 0.



The Equilibrium Market Price of External Risk

Theorem: Assume that the derivative’s payoff is strictly monotone
in the external risk process (Rt) and consider the quadratic BSDE

dYt = −ZtdWt +
1

2

[
−(ZR

t )2 + (θS)2 − 2θSZS
t −

∑
a∈A

(Z a
t )2

]
dt

with terminal condition YT = −Hab where

Z =
(
ZS ,ZR , (Z a)a∈A

)
.

Then ZR is an equilibrium market price of external risk. Under
additional assumptions each Z a is bounded.

What does all this have to do with discrete time
models?



The Equilibrium Market Price of External Risk

Theorem: If the preceding BSDE has a unique solution such that
Z a is bounded, then the solution can be approximated by equation
in discrete time of the form:

Ȳt = E[Ȳt+h|Ft ] + ft(Z̄t+h)

which is just the equilibrium dynamics corresponding to a discrete
time model.

Corollary: The equilibrium dynamics of the discrete time model
converge to an equilibrium dynamics of a continuous time model.

Notice: The convergence result requires an equilibrium in the
continuous time!



Summary and Conclusion

• We considered discrete time model of general equilibrium
pricing under translation invariant preferences.

• Equilibria exist if and only if a representative agent exists.

• In a random walk framework equilibria can be characterized in
terms of a coupled system of backward equation.

• For a simple benchmark model: convergence of equilibrium
dynamics to equilibria of a continuous time model

• Existence and differentiability if quadratic BSDEs.

• Applications of BSDEs to problems of cross hedging.


