Stochastic Parameterisation Schemes Based on Rigorous Limit Theorems

Joel Culina1,2, Adam Monahan2, and Sergey Kravtsov3

1 culinaj@uvic.ca

2 University of Victoria

3 University of Wisconsin, Milwaukee
Stochastic climate modeling

Most stochastic climate models are specific to the modeled system, but system-specific SDE models in particular implicitly apply limit theorems, which give general formulas.
Most stochastic climate models are specific to the modeled system, but system-specific SDE models in particular implicitly apply limit theorems, which give general formulas

\[\frac{dX}{dt} = LX, \]

→ the equations of motion are linearised about a mean state, white noise is added to account for the (fast-evolving) error in linearisation, and a damping term is added for stability:

\[\frac{dX}{dt} = (L + D)X + \frac{dW}{dt} \]
Theorem-based reduction methods

Hasselmann(1976)
Papanicolaou(1976)

Khasminskii(1966)

Fatkullin and Vanden-Eijnden(2004)

* Significant similarities between the two methods, but also important differences
Theorem-based reduction methods

Fatkullin and Vanden-Eijnden(2004)

* Significant similarities between the two methods, but also important differences
Theorem-based reduction methods

Hasselmann(1976)
Papanicolaou(1976)

Khasminskii(1966)

Fatkullin and Vanden-Eijnden(2004)

* Significant similarities between the two methods, but also important differences
\[
\begin{align*}
\frac{dx}{dt} &= f(x, y) \quad \text{(slow climate mode)} \\
\frac{dy}{dt} &= \frac{1}{\epsilon} g(x, y) \quad \text{(fast weather mode)}
\end{align*}
\]

As \(\epsilon \to 0 \), \(x \to X \) in distribution, where \(X \) satisfies:

\[
\frac{dX}{dt} = \bar{f}(X) + \epsilon D(X) + \sqrt{\epsilon} \sigma(X) \frac{dW}{dt}
\]
\[
\frac{dx}{dt} = f(x, y) \quad \text{(slow climate mode)}
\]
\[
\frac{dy}{dt} = \frac{1}{\epsilon} g(x, y) \quad \text{(fast weather mode)}
\]

As \(\epsilon \to 0 \), \(x \to X \) in distribution, where \(X \) satisfies:

\[
\frac{dX}{dt} = \bar{f}(X) + \epsilon D(X) + \sqrt{\epsilon} \sigma(X) \frac{dW}{dt}
\]

\[
\bar{f} = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(x, y_t^x) \, dt
\]
\[
\frac{dx}{dt} = f(x, y) \quad \text{(slow climate mode)}
\]
\[
\frac{dy}{dt} = \frac{1}{\epsilon} g(x, y) \quad \text{(fast weather mode)}
\]

As \(\epsilon \to 0 \), \(x \to X \) in distribution, where \(X \) satisfies:
\[
\frac{dX}{dt} = \overline{f}(X) + \epsilon D(X) + \sqrt{\epsilon \sigma(X)} \frac{dW}{dt}
\]

\[
\overline{f} = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(x, y_t^x) \, dt
\]
\[
\sigma = \int_0^{\infty} \mathbb{E}(f(x, y_t^x) - \overline{f})(f(x, y_0^x) - \overline{f})^* \, dt
\]
\[
\frac{dx}{dt} = f(x, y) \quad \text{(slow climate mode)}
\]
\[
\frac{dy}{dt} = \frac{1}{\varepsilon} g(x, y) \quad \text{(fast weather mode)}
\]

As \(\varepsilon \to 0 \), \(x \to X \) in distribution, where \(X \) satisfies:

\[
\frac{dX}{dt} = \bar{f}(X) + \varepsilon D(X) + \sqrt{\varepsilon} \sigma(X) \frac{dW}{dt}
\]

- \(\bar{f} = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(x, y_t^x) \, dt \)
- \(\sigma = \int_0^\infty \mathbb{E}(f(x, y_t^x) - \bar{f})(f(x, y_0^x) - \bar{f})^* \, dt \)
- \(D = \int_0^\infty \mathbb{E}(\nabla_x f(x, y_t^x) - \nabla_x \bar{f})(f(x, y_t^x) - \bar{f})^* \, dt \)
\[\frac{dx}{dt} = f(x, y) \quad \text{(slow climate mode)} \]
\[\frac{dy}{dt} = \frac{1}{\epsilon} g(x, y) \quad \text{(fast weather mode)} \]

As \(\epsilon \to 0 \), \(x \to X \) in distribution, where \(X \) satisfies:

\[\frac{dX}{dt} = \bar{f}(X) + \epsilon D(X) + \sqrt{\epsilon \sigma(X)} \frac{dW}{dt} \]

- \(\bar{f} = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(x, y_t^x) \, dt \)
- \(\sigma = \int_0^\infty \mathbb{E}((f(x, y_t^x) - \bar{f})(f(x, y_0^x) - \bar{f}^*) \, dt \)
- \(D = \int_0^\infty \mathbb{E}((\nabla_x f(x, y_t^x) - \nabla_x \bar{f})(f(x, y_t^x) - \bar{f}^*) \, dt \)

* Simple to implement: do not have to resolve fast mode, \(y \)
Online closure

Figure 3: Schematic illustration of the projective integration scheme
\[\frac{dx}{d\tau} = \frac{1}{\epsilon} f_1(x, y) + f_0(x, x) \]
\[\frac{dy}{d\tau} = \frac{1}{\epsilon^2} g_0(y, y) + \frac{1}{\epsilon} g_1(x, y) \]

As \(\epsilon \to 0 \), \(x \to X \) in distribution, where \(X \) satisfies:
\[\frac{dX}{d\tau} = f_0(X, X) + D(X) + \sigma(X) \frac{dW}{d\tau} \]
\[
\begin{align*}
\frac{dx}{d\tau} &= \frac{1}{\epsilon} f_1(x, y) + f_0(x, x) \\
\frac{dy}{d\tau} &= \frac{1}{\epsilon^2} g_0(y, y) + \frac{1}{\epsilon} g_1(x, y)
\end{align*}
\]

As \(\epsilon \to 0 \), \(x \to X \) in distribution, where \(X \) satisfies:

\[
\frac{dX}{d\tau} = f_0(X, X) + D(X) + \sigma(X) \frac{dW}{d\tau}
\]

- similar formulas for \(D \) and \(\sigma \), but now \(\sigma = \sigma(f_1) \) and \(D = D(f_1, g_1) \)
\[\frac{dx}{d\tau} = \frac{1}{\epsilon} f_1(x, y) + f_0(x, x) \]
\[\frac{dy}{d\tau} = \frac{1}{\epsilon^2} g_0(y, y) + \frac{1}{\epsilon} g_1(x, y) \]

As \(\epsilon \to 0 \), \(x \to X \) in distribution, where \(X \) satisfies:

\[\frac{dX}{d\tau} = f_0(X, X) + D(X) + \sigma(X) \frac{dW}{d\tau} \]

- similar formulas for \(D \) and \(\sigma \), but now \(\sigma = \sigma(f_1) \) and \(D = D(f_1, g_1) \)

\[\to \quad \text{In particular,} \quad D = \int_0^\infty \mathbb{E}(\nabla f_1(x, y_t))(f_1(x, y_t), g_1(x, y_t))^* \, dt \]
Franzke et al. (2005)

\[
\frac{dx}{d\tau} = \frac{1}{\epsilon} f_1(x, y) + f_0(x, x)
\]
\[
\frac{dy}{d\tau} = \frac{1}{\epsilon^2} g_0(y, y) + \frac{1}{\epsilon} g_1(x, y)
\]

As $\epsilon \to 0$, $x \to X$ in distribution, where X satisfies:

\[
\frac{dX}{d\tau} = f_0(X, X) + D(X) + \sigma(X) \frac{dW}{d\tau}
\]

- similar formulas for D and σ, but now $\sigma = \sigma(f_1)$ and $D = D(f_1, g_1)$

\[\to\]

In particular, $D = \int_0^\infty \mathbb{E}(\nabla f_1(x, y_t))(f_1(x, y_t), g_1(x, y_t))^* \, dt$

* An explicit reduced equation can be derived
As $\epsilon \to 0$, $x \to X$ in distribution, where X satisfies:

$$
\frac{dX}{d\tau} = f_0(X, X) + D(X) + \sigma(X) \frac{dW}{d\tau}
$$

- similar formulas for D and σ, but now $\sigma = \sigma(f_1)$ and $D = D(f_1, g_1)$

\rightarrow In particular, $D = \int_0^\infty \mathbb{E}(\nabla f_1(x, y_t))(f_1(x, y_t), g_1(x, y_t))^* \, dt$

\star An explicit reduced equation can be derived
\[
\frac{dx}{d\tau} = \frac{1}{\epsilon} f_1(x, y) + f_0(x, x)
\]
\[
\frac{dy}{d\tau} = \frac{1}{\epsilon^2} g_0(y, y) + \frac{1}{\epsilon} g_1(x, y)
\]

As \(\epsilon \to 0 \), \(x \to X \) in distribution, where \(X \) satisfies:
\[
\frac{dX}{d\tau} = f_0(X, X) + D(X) + \sigma(X) \frac{dW}{d\tau}
\]

- similar formulas for \(D \) and \(\sigma \), but now \(\sigma = \sigma(f_1) \) and \(D = D(f_1, g_1) \)

\[
\rightarrow \quad \text{In particular, } D = \int_0^\infty \mathbb{E}(\nabla f_1(x, y_t))(f_1(x, y_t), g_1(x, y_t))^* \, dt
\]

* An explicit reduced equation can be derived
Tests of assumptions

- Assumptions of reduction theory:
Tests of assumptions

- Assumptions of reduction theory:
 - time-scale separation into slow and fast variables
Tests of assumptions

- Assumptions of reduction theory:
 - time-scale separation into slow and fast variables
 - ergodicity and mixing of fast dynamics
Tests of assumptions

- Assumptions of reduction theory:
 - time-scale separation into slow and fast variables
 - ergodicity and mixing of fast dynamics
 - the existence of limiting slow dynamics
Atmospheric low-frequency variability (LFV)
QG model of LFV (Kravtsov et al. (2005))
Bifurcation: unimodal to bimodal distribution of jet axis
Existence of limiting slow dynamics

\[
\frac{dx}{dt} = f(x, y)
\]

\[
\frac{dy}{dt} = \frac{1}{\delta \varepsilon} g(x, y)
\]

- The fast term is up-scaled by suitable choice of averaging parameters in Hasselmann’s deterministic averaging equation
Existence of limiting slow dynamics

\[
\frac{dx}{dt} = f(x, y) \quad \frac{dy}{dt} = \frac{1}{\delta\epsilon} g(x, y)
\]

- The fast term is up-scaled by suitable choice of averaging parameters in Hasselmann’s deterministic averaging equation.

- Speeding up the fast mode is equivalent to changing the bifurcation parameter (the bottom drag parameter).
Existence of limiting slow dynamics

\[\frac{dx}{dt} = f(x, y) \]
\[\frac{dy}{dt} = \frac{1}{\delta \epsilon} g(x, y) \]

- The fast term is up-scaled by suitable choice of averaging parameters in Hasselmann’s deterministic averaging equation.
- Speeding up the fast mode is equivalent to changing the bifurcation parameter (the bottom drag parameter).
- In large neighbourhood of bifurcation point, not every set of slow variables has limiting slow dynamics.
EOFs in region of jet bimodality

Autocorrelation timescale and % explained variance vs. EOF; \(k^{-1} = 6.7 \text{ days} \)

- wave-4
- stationary mode
Schematic of KRG05 dynamics

- Bifurcation point
- Unimodal jet distribution
- Bimodal jet distribution
- Increasing spin-down timescale
Method of Franzke et al. (2005); 1-D SDE

Stationary mode PDFs of unreduced and 1-D regressed reduced models;

$k^{-1} = 6.7$ days

Principal component

unreduced model
reduced model $\lambda_M = \lambda_L = 2$

Principal component

reduced model $\lambda_M = \lambda_L = 2$
reduced model $\lambda_M = \lambda_L = 4$
reduced model $\lambda_M = \lambda_L = 10$
Method of Franzke et al. (2005); 1-D SDE

Stationary mode time series of regressed reduced models w/out wave-4; $k^{-1} = 6.7$ days

$\lambda_B = \lambda_A = \lambda_F = 0.175$

$\lambda_B = \lambda_A = \lambda_F = 0.1$
Method of Franzke et al. (2005); 3-D SDE

Time series of stationary mode; $k^{-1} = 2.3$ days
Regressed reduced model with $\lambda_B = \lambda_A = \lambda_F = 0$

Regressed reduced model with $\lambda_B = \lambda_A = \lambda_F = 0.15$
Hasselmann’s method

Stationary mode PDFs of unreduced and reduced models; $k^{-1} = 6.7$ days
Deterministic averaging–DNS hybrid; 4X faster than DNS

Unreduced model
Reduced model

Deterministic averaging with additive white noise

Unreduced model
Reduced model
Conclusions

- In a large neighbourhood of bifurcation point there is no limiting 3-D slow dynamics despite good scale separation, highlighting the importance of tests of existence of limits.
Conclusions

In a large neighbourhood of bifurcation point there is no limiting 3-D slow dynamics despite good scale separation, highlighting the importance of tests of existence of limits

→ Limiting slow dynamics can differ considerably from slow dynamics, even for order of magnitude scale separation
Conclusions

- In a large neighbourhood of bifurcation point there is no limiting 3-D slow dynamics despite good scale separation, highlighting the importance of tests of existence of limits

→ Limiting slow dynamics can differ considerably from slow dynamics, even for order of magnitude scale separation

- The conclusion of KRG05 that first-order dynamics of jet bimodality arises from interaction between stationary and wave-4 modes is incorrect
Conclusions

- In a large neighbourhood of bifurcation point there is no limiting 3-D slow dynamics despite good scale separation, highlighting the importance of tests of existence of limits.

 → Limiting slow dynamics can differ considerably from slow dynamics, even for order of magnitude scale separation.

- The conclusion of KRG05 that first-order dynamics of jet bimodality arises from interaction between stationary and wave-4 modes is incorrect.

 → Leading fast synoptic eddies are of first-order importance and wave-4 facilitates transitions between states.
Conclusions: Method of Franzke et al. (2005)

✓ Very good simulation of climate statistics, including jet bimodality, of KRG05 model of intermediate complexity with order of magnitude timescale separation
Conclusions: Method of Franzke et al. (2005)

✓ Very good simulation of climate statistics, including jet bimodality, of KRG05 model of intermediate complexity with order of magnitude timescale separation

✓ Formulae laid out in full, in paper
Conclusions: Method of Franzke et al. (2005)

✓ Very good simulation of climate statistics, including jet bimodality, of KRG05 model of intermediate complexity with order of magnitude timescale separation

✓ Formulae laid out in full, in paper

✓ Effective SDE far faster than DNS
Conclusions: Method of Franzke et al. (2005)

✓ Very good simulation of climate statistics, including jet bimodality, of KRG05 model of intermediate complexity with order of magnitude timescale separation
✓ Formulae laid out in full, in paper
✓ Effective SDE far faster than DNS
✓ Combined with Hasselmann’s averaging algorithm, reveals much about underlying physics
Conclusions: Method of Franzke et al. (2005)

✓ Very good simulation of climate statistics, including jet bimodality, of KRG05 model of intermediate complexity with order of magnitude timescale separation

✓ Formulae laid out in full, in paper

✓ Effective SDE far faster than DNS

✓ Combined with Hasselmann’s averaging algorithm, reveals much about underlying physics

Not suited to Marshall & Molteni (1993) model, which has smaller scale separation (Strounine et al. (to be submitted))
Conclusions: Method of Franzke et al. (2005)

✓ Very good simulation of climate statistics, including jet bimodality, of KRG05 model of intermediate complexity with order of magnitude timescale separation

✓ Formulae laid out in full, in paper

✓ Effective SDE far faster than DNS

✓ Combined with Hasselmann’s averaging algorithm, reveals much about underlying physics

■ Not suited to Marshall & Molteni (1993) model, which has smaller scale separation (Strounine et al. (to be submitted))

■ In present form, not suited to models whose operators are not all multilinear (i.e., operators which cannot be written as tensors)
Conclusions: Method of Franzke et al. (2005)

✓ Very good simulation of climate statistics, including jet bimodality, of KRG05 model of intermediate complexity with order of magnitude timescale separation

✓ Formulae laid out in full, in paper

✓ Effective SDE far faster than DNS

✓ Combined with Hasselmann’s averaging algorithm, reveals much about underlying physics

■ Not suited to Marshall & Molteni (1993) model, which has smaller scale separation (Strounine et al. (to be submitted))

■ In present form, not suited to models whose operators are not all multilinear (i.e., operators which cannot be written as tensors)

■ For larger models, off-line calculations would be impractical without further simplifications
Conclusions: Hasselmann’s method

✓ Very good simulation of climate statistics
Conclusions: Hasselmann’s method

✓ Very good simulation of climate statistics
✓ Simple to implement, potentially in models of greater complexity
Conclusions: Hasselmann’s method

✓ Very good simulation of climate statistics
✓ Simple to implement, potentially in models of greater complexity
✓ Combined with method of Franzke et al. (2005), reveals much about underlying physics
Conclusions: Hasselmann’s method

✓ Very good simulation of climate statistics
✓ Simple to implement, potentially in models of greater complexity
✓ Combined with method of Franzke et al. (2005), reveals much about underlying physics

Online scheme may yield only moderate time gains
Conclusions: Hasselmann’s method

✓ Very good simulation of climate statistics
✓ Simple to implement, potentially in models of greater complexity
✓ Combined with method of Franzke et al. (2005), reveals much about underlying physics

■ Online scheme may yield only moderate time gains
Conclusions: Hasselmann’s method

✓ Very good simulation of climate statistics
✓ Simple to implement, potentially in models of greater complexity
✓ Combined with method of Franzke et al. (2005), reveals much about underlying physics

Online scheme may yield only moderate time gains
Stochastic Parameterisation Schemes Based on Rigorous Limit Theorems – p. 21/21