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Incomplete markets with Real Assets

Pure Exchange

Deterministic model

Classical Arrow-Debreu Model

E = exchange of goods ∈ IRL

(economic) agents: i ∈ I, |I| finite
consumption by agent i: xi ∈ IRL

endowment: ei ∈ IRL

utility: ui : IRL → [−∞,∞),
survival set: Xi = dom ui =

{

xi

∣

∣ui(xi) > −∞
}

exchange at market prices: p

i-budgetary constraint: 〈p, xi〉 ≤ 〈p, ei〉

market clearing:
∑

i∈I x∗
i ≤

∑

i∈I ei
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Incomplete markets with Real Assets

Pure Exchange

Uncertain environment

The agents: i ∈ I, |I| finite

1 information: present state & all potential future states s ∈ S

2 beliefs: agent-i assigns ‘probability’ bi(s) to (future) state s

3 consumption: (x0
i ,x

1
i ) = (x0

i , (xi(s), s ∈ S))
market prices: (p0,p1) = (p0, (p1(s), s ∈ S))

4 delivery contracts (commodities) zk [= (z+

k , z−

k )]
trading prices: q and (r(s), s ∈ S) supply guarantees
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Incomplete markets with Real Assets

Pure Exchange

Uncertain environment

Agent’s decisions & resources

decision criterion: Ui(x
0
i ,x

1
i )

for example: maxu0
i (x

0
i ) + Ei{u

1
i (s, x1

i (s))}
= maxu0

i (x
0
i ) +

∑

s∈S bi(s)u
1
i (s, x

1
i (s)),

survival set (feasible consumption): Xi = domUi

=
{

x0
i , (x

1
i (s), s ∈ S))

∣

∣ Ui(x
0
i , (x

1
i (s), s ∈ S)) > −∞

}

Ui usc and concave =⇒ Xi convex, 6=⇒ Xi closed

Ui increasing =⇒ Xi + [ IRn
+ × (IRn

+)S ] ⊂ Xi, intXi 6= ∅,

insatiability: ∀(x0
i ,x

1
i ) ∈ Xi,

∃ (x̃0
i ,x

1
i ) with U(x0

i ,x
1
i ) < U(x̃0

i , x
1
i )

∀ s ∈ S, ∃ x̃1
i (s) such that U(x0

i ,x
1
i ) < U(x0

i , x̃
1
i ).

endowments: e0
i , (e

1
i (s), s ∈ S) = (e0

i ,e
1
i )

strict survivability (assumption): (e0
i ,e

1
i ) ∈ intXi, i ∈ I
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Incomplete markets with Real Assets

Pure Exchange

Uncertain environment

Real assets: Shifting resources

1 real assets = contracts for delivery of goods
2 contract types k = 1, . . . ,K @ price qk, bought or sold
3 Dk(s, p

1(s)) ≥ 0 delivery in state ‘s’ per unit of contract k
Dk,l(s, p

1(s)) > 0 some state s ∈ S some good ‘l’
4 Delivery matrix: D(s, p1(s)) = [ · · ·Dk(s, p1(s)) · · · ]

& some agent is l-insatiable in state s

5 dependence on p1(s) via price ratios
D(s, λp1(s)) = D(s, p1(s)) insensitive to price scaling

6 p1(s) 7→ Dk(s, p
1(s)) continuous

Not included for now: equity contracts
cf. later ‘firms and production’
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Pure Exchange

Uncertain environment

Example: price-based option (≈ exotic option)

depends on goods l0, l1 and 0 < κ < κ′ < ∞
say l0 = $, l1 a commodity (pork bellies)

contract k delivers in l0-units,
depends on η(s) = p1

l1
(s)/p1

l0
(s)

Dk,l0(s) =























0 p1
l0
(s) > 0 and η(s) ≤ κ

p1
l1
(s)/p1

l0
(s) − κ p1

l0
(s) > 0 and κ ≤ η(s) ≤ κ′

κ′ − κ p1
l0
(s) > 0 and κ′ ≤ η(s)

or p1
l0
(s) = 0 & p1

l1
(s) > 0

Check: Dk,l0(s, p
1(s)) > 0 for some s,

continuous, insensitive to scaling
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Incomplete markets with Real Assets

Incomplete markets

Framework

Contracts and deliveries

z+

i contract purchases and z−

i sales of agent-i

simultaneous buying/selling allowed
but won’t occur! cf. assumptions: Dk,l(s, p

1(s))

(z+

i , z−

i ) generates D(s, p1(s))[z+

i − z−

i ] goods

time 0: cost 〈q, z+

i − z−

i 〉

time 1: value 〈p1(s),D(s, p1(s))[z+

i − z−

i ]〉

.

Vk(s, p
1)=〈p1,Dk(s, p

1), Vk(p
1)〉=(. . . Vk(s, p

1) . . . ) ∈ IR|S|

V (p1) = [ |S| × K ]-matrix

W (p1) = linV (p1), linear span of {Vk(s, p
1)}

Financial market is complete for p1 if W (p1) = IR|S|

∀ t ∈ IR|S|,∃ portfolio: V (p1)[z+ − z−] = t
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Incomplete markets with Real Assets

Incomplete markets

Framework

Incomplete market’s equilibrium?

The best & the brightest: Arrow, Magill & Quinzii, Radner, Shafer,
Dubey, Geanakoplos, Shubik, Zame, Stiglitz, . . .

Existence: contracts types, exogenous bounds, or generic

Theorem
Under these assumptions and no delivery requirements, an
equilibrium exists under the following assumption,

rank V (p1) is constant on
{

p1
∣

∣ p1 > 0
}

i.e. p1
l > 0 for all l. Or, equivalently p1 7→ W (p1) = linV (p1) is

continuous on the positive orthant of (IRL)|S|.

Not generic *** Methodology: Variational Analysis rather than
Differential Geometry
A constructive approach: via supply guarantees.
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Incomplete markets

Framework

Deliveries

Our approach: ‘endogenous’, requires deliveries take place

1 sale z−

i,k means delivering Dk(s)z
−

i,k

not just 〈p1(s),Dk(s)zi,k〉

2 the total of all promised deliveries of any good l in state s
may not exceed the total amount of good l that is available
in state s, i.e., total endowment

∑

i∈I e1
i,l(s)

3 leads to a market of supply guarantees
4 per unit rl(s) ≥ 0: managed by Walrasian broker

same process that generates (p0,p1)
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Incomplete markets

Framework

Guarantees

1 guarantee price vector
r = (r(s), s ∈ S) ∈ (IRL

+)|S|, r(s) = (. . . rl(s) . . . )

2 portfolio (z+

i , z−

i ) cost to agent i:
〈q, z+

i − z−

i 〉 +
∑

s∈S〈r(s),D(s, p1)z−

i 〉

3 implies adjusted budget constraint(s)
4 different market values for ‘long’ & ‘short’ positions

long value of contract k is qk

short value: qk −
∑

s∈S〈r(s),Dk(s, p1)〉

5 yields existence with no restriction on V (p1) (rank, etc.)
6 like [ (p0,p1), q ], r is defined endogenously
7 rl(s) 6= 0 only if agents’ portfolios threaten a shortage in

good l in state s



Incomplete markets with Real Assets

Incomplete markets

Framework

Guarantees

1 guarantee price vector
r = (r(s), s ∈ S) ∈ (IRL

+)|S|, r(s) = (. . . rl(s) . . . )

2 portfolio (z+

i , z−

i ) cost to agent i:
〈q, z+

i − z−

i 〉 +
∑

s∈S〈r(s),D(s, p1)z−

i 〉

3 implies adjusted budget constraint(s)
4 different market values for ‘long’ & ‘short’ positions

long value of contract k is qk

short value: qk −
∑

s∈S〈r(s),Dk(s, p1)〉

5 yields existence with no restriction on V (p1) (rank, etc.)
6 like [ (p0,p1), q ], r is defined endogenously
7 rl(s) 6= 0 only if agents’ portfolios threaten a shortage in

good l in state s



Incomplete markets with Real Assets

Incomplete markets

Framework

Guarantees

1 guarantee price vector
r = (r(s), s ∈ S) ∈ (IRL

+)|S|, r(s) = (. . . rl(s) . . . )

2 portfolio (z+

i , z−

i ) cost to agent i:
〈q, z+

i − z−

i 〉 +
∑

s∈S〈r(s),D(s, p1)z−

i 〉

3 implies adjusted budget constraint(s)
4 different market values for ‘long’ & ‘short’ positions

long value of contract k is qk

short value: qk −
∑

s∈S〈r(s),Dk(s, p1)〉

5 yields existence with no restriction on V (p1) (rank, etc.)
6 like [ (p0,p1), q ], r is defined endogenously
7 rl(s) 6= 0 only if agents’ portfolios threaten a shortage in

good l in state s



Incomplete markets with Real Assets

Incomplete markets

Framework

Guarantees

1 guarantee price vector
r = (r(s), s ∈ S) ∈ (IRL
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s∈S〈r(s),D(s, p1)z−

i 〉
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Incomplete markets

Equilibrium

Admissible prices

Definition

(p0,p1, q, r) admissible price system when
• p0 ≥ 0,p1 ≥ 0, q ≥ 0, r ≥ 0
• p0 6= 0, p1(s) 6= 0 for all s ∈ S

Definition

Good l∗ can serve as a numéraire if p0
l∗ > 0, p1

l∗(s) > 0,∀ s ∈ S.
Re-scaling so that p0

l∗ = 1, p1
l∗(s) = 1,∀ s ∈ S

leads to numéraire prices.
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Incomplete markets

Equilibrium

Agents’ optimization problems

Given an admissible price system, agent i solves:

max Ui(x
0
i ,x

1
i ) subject to

〈p0, x0
i − e0

i 〉 + 〈q, z+

i − z−

i 〉

+
∑

s∈S

〈r(s),D(s, p1(s))z−

i − e1
i (s)〉 ≤ 0

∀ s ∈ S : 〈p1(s), x1
i (s) − e1

i (s) + D(s, p1(s))[ z+

i − z−

i ]〉 ≤ 0,

(x0
i ,x

1
i ) ∈ Xi, z+

i ≥ 0, z−

i ≥ 0

note: ‘≤ 0’ constraints consistent with free disposal
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Equilibrium

Definition

An admissible price system (p̄0, p̄1, q̄, r̄) is an equilibrium when
(x̄0, x̄1, z̄+, z̄−) solve the corresponding agents’ problems and

∑

i∈I(x̄0
i − e0

i ) ≤ 0, =l if p̄0
l > 0

∑

i∈I(x̄1
i − e1

i ) ≤ 0, =l,s if p̄1
l (s) > 0

∑

i∈I z̄+

i =
∑

i∈I z̄−

i

∀ s : D(s, p̄1(s)
∑

i∈I z̄−

i ≤
∑

i∈I e1
1(s), =l when r̄l(s) > 0.

Theorem
Under our assumptions, ∃ an equilibrium price system

contract prices q̄ > 0 and
p̄1

l (s) > 0 for all s ∈ S in which good l is to be delivered
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Incomplete markets

Equilibrium

Arbitrage

Definition

Admissible prices (p0,p1, q, r) affords arbitrage
if ∃ portfolio (z+, z−) such that
1 〈q, z+ − z−〉 +

∑

s∈S〈r(s),D(s, p1(s))z−〉 ≤ 0

2 ∀ s : 〈p1(s),D(s, p1(s))[ z+

i − z−

i 〉 ≤ 0 & <i for some i

Theorem

Given an admissible price system (p0,p1, q, r), the agents’
problems are solvable if and only if the price system doesn’t
afford arbitrage
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Incomplete markets

Equilibrium

Discounting to the present

Theorem

A necessary and sufficient condition for no-arbitrage:
∃ discount factors ρ = (ρ(s), s ∈ S) subject to for k = 1, . . . ,K,
∑

s∈S ρ(s)〈p1(s),Dk(s, p
1(s))〉 ∈

[qk −
∑

s∈S〈r(s),Dk(s, p
1(s))〉, qk ]

Definition
1 consolidated discount factor ρ0 =

∑

s∈S ρ(s)

2 imputed probabilities: π(s) = ρ(s)/ρ0

3 ρ is the discount bundle associated with (p0,p1, q, r)
if it satisfies the no-arbitrage NS-conditions.

for t ∈ IR|S| =⇒ 〈ρ, t〉 = ρ0
∑

s∈S π(s)t(s) = ρ0Eπ{t} ∀ t
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Incomplete markets

Equilibrium

Market valuations

Definition

(p0,p1, q, r)-admissible & gk(p
1, r) =

∑

s∈S〈r(s),Dk(s, p1(s))〉

long value of t = (. . . , t(s), . . . ) ∈ IR|S|

v+(t) = min
(

〈q, z+〉 − 〈q − g(p1, r), z−〉
)

subject to

z+ ≥ 0, z− ≥ 0, D(s, p1(s)[z+ − z−] ≥ t(s) for all s

short value of t

v−(t) = max
(

〈q − g(p1, r), z−〉 − 〈q, z+〉
)

subject to

z+ ≥ 0, z− ≥ 0, D(s, p1(s)[z+ − z−] ≤ t(s) for all s
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Incomplete markets

Equilibrium

Market valuations via discounts

Theorem

Let ρ be a discount bundle (that satisfies the no-arbitrage
NS-conditions) given (p0,p1, q, r)-admissible, one has

v+(t) = max
ρ

∑

s∈S

ρ(s)t(s), v−(t) = min
ρ

∑

s∈S

ρ(s)t(s)

The functions t 7→ v+(t) and t 7→ v−(t) are, respectively,
sublinear and suplinear on IR|S|. Moreover v−(t) = −v+(t),
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Equilibrium

Relaxing delivery requirements

αi guaranteed fraction of delivery obligation by i

budget constraint for i becomes:
〈p0, x0

i − e0
i 〉 + 〈q, z+

i − z−

i 〉
+

∑

s∈S〈r(s),D(s, p1(s))αiz
−

i − e1
i (s)〉 ≤ 0

adjusted equilibrium condition,
D(s, p̄1(s))

∑

i∈I αiz̄
−

i ≤
∑

i∈I e1
i (s) with =l when rl(s) > 0

Equilibrium: same (formal) argument
!! αi (reliability of vendor?) enters model exogenously
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Equilibrium

Limit case: no guarantees

Now, let αi → 0

Theorem

Under our assumptions, if the requirement for the delivery is
dropped that in turns leads to the price supply guarantees
r ≡ 0, an equilibrium still exists under the following assumption,

rank V (p1) is constant on
{

p1
∣

∣ p1 > 0
}

i.e. p1
l > 0 for all l. Or, equivalently p1 7→ W (p1) = linV (p1) is

continuous on the positive orthant of (IRL)|S|.
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Numerical Approach

Variational Inequality I

max
xi

ui(xi) s.t. 〈p, xi〉 ≤ 〈p, ei〉, xi ∈ Ci i ∈ I

∑

i

(ei − xi) = s(p) ≥ 0.

KKT-conditions and Market clearing conditions:
x̄i ∈ Ci optimal ⇐⇒ ∃ λ̄i ≥ 0 (linear constrait)

(a) 〈p, ei − x̄i〉 ≥ 0 (feasibility)

(b) λ̄i

(

〈p, ei − x̄i〉
)

= 0 (compl.slackness)

(c) ∇ui(x̄i) = λ̄ip (ei ∈ int Ci)

(d)
∑

i(ei − x̄i) ≥ 0 (market clearing)
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Numerical Approach

Variational Inequality II

max
xi

ui(xi) such that 〈p, xi〉 ≤ 〈p, ei〉, xi ∈ Ci i ∈ I
∑

i

(ei − xi) = s(p) ≥ 0.

G(p, (xi), (λ̄i)) =
[

∑

i

(ei − xi);
(

λ̄ip −∇ui(xi)
)

; 〈p, ei − xi〉
]

D = ∆ ×
(

∏

i
Ci

)

×
(

∏

i
IR+

)

ND(z̄) =
{

v
∣

∣ 〈v, z − z̄〉 ≤ 0, ∀ z ∈ D
}

−G(p̄, (x̄i), (λ̄i)) ∈ ND(p̄, (x̄i), (λ̄i)).

Replacing D by D̂ bounded: explicit bound on λi via duality.
D polyhedral leads to efficient algorithmic procedures
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Numerical Approach

Actually . . .

Geomtric Variational Inequality:
find x̄ ∈ C such that −G(x̄) ∈ NC(x̄)

where NC(x̄) =
{

v
∣

∣ 〈v, x − x̄〉 ≤ 0,∀x ∈ C
}

Functional Variational Inequality:
find x̄ such that −G(x̄) ∈ ∂f(x̄)

or equivalently,

f(x) ≥ f(x̄) − 〈G(x̄), x − x̄〉 ∀x ∈ IRn.
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Firms and production

Production, firms and shares

1 Activities (at time 0):
{

yi, i ∈ I
}

2 resources input: Ti0yi, goods output: Ti1(s)yi

3 auxiliary goods y0′: endowment e0′
j,l′

j

, traded @ time 0

4 Yj =
{

(y0
j , y

0′
j ,y1

j

}

technology set for activity j ∈ J
closed convex cone

5 Share ownership: θj = y0′
j,l′

j
and θi,j ownership by agent i

6 Examples: production, savings and storage, pre-existing
securities and investments (bonds, equity shares), . . .
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